Consider a branch of logarithm $$f(z):=-\ln(1-z)$$
for $z\in\mathbb{C}\setminus\mathbb{R}_{\geq 1}$ that coincides with $\displaystyle\sum_{k=1}^\infty\,\frac{z^k}{k}$ when $|z|<1$. Define also $$f_r(z):=\sum_{k=1}^{r}\,\frac{z^k}{k}$$
for all $z\in\mathbb{C}$ and $r\in\mathbb{Z}_{\geq0}$. It is known that $\lim\limits_{r\to\infty}\,f_r(z)=f(z)$ for all $z\in\mathbb{C}$ such that $|z|\leq1$ and $z\neq 1$.
We now define
$$g_r(\theta):=f_r\big(\text{e}^{\text{i}\theta}\big)=\sum_{k=1}^{r}\,\frac{\text{e}^{\text{i}k\theta}}{k}$$
and
$$g(\theta):=f\big(\text{e}^{\text{i}\theta}\big)=-\ln\big(1-\text{e}^{\text{i}\theta}\big)$$
for all $\theta\in(0,2\pi)$ and $r\in\mathbb{Z}_{\geq 0}$. Thus, $g_r\to g$ pointwise as $r\to\infty$. For each compact subset $K$ of $(0,2\pi)$, we want to show that the family $\Big(g_r\big|_K\Big)_{r=0}^\infty$ is uniformly equicontinuous. This proves that $g_r\big|_K\to g\big|_K$ uniformly as $r\to\infty$, and thereby, proving the OP's assertion that
$$\lim_{l\to\infty}\,\int_0^{2\pi}\,\frac{g_{l+1}(\theta)-g_n(\theta)}{\text{e}^{\text{i}(m+1)\theta}}\,\text{d}\theta=\int_0^{2\pi}\,\frac{g(\theta)-g_n(\theta)}{\text{e}^{\text{i}(m+1)\theta}}\,\text{d}\theta\,.$$
Here is the proof of the claim above. Let $K$ be a compact subset of $(0,2\pi)$. Fix $\epsilon>0$ and $\phi\in K$. We want to find $\delta>0$ such that $$\big|g_r(\theta)-g_r(\phi)\big|<\epsilon\tag{*}$$ for every $r\in\mathbb{Z}_{\geq 0}$ and every $\theta\in K$ such that $|\theta-\phi|<\delta$. However,
$$g'_r(\theta)=\text{i}\text{e}^{\text{i}\theta}\,f_r'\left(\text{e}^{\text{i}\theta}\right)$$
so that
$$\left|g'_r(\theta)\right|=\Big|f_r'\left(\text{e}^{\text{i}\theta}\right)\Big|=\left|\frac{1-\text{e}^{\text{i}r\theta}}{1-\text{e}^{\text{i}\theta}}\right|\leq \frac{2}{\big|1-\text{e}^{\text{i}\theta}\big|}=\frac{1}{\Big|\sin\left(\frac{\theta}{2}\right)\Big|}\,.$$
Let $M$ be the supremum of $\dfrac{1}{\Big|\sin\left(\frac{\theta}{2}\right)\Big|}$ for $\theta\in K$. Then, each $g_r$ is $M$-Lipschitz. Therefore, for $\delta:=\dfrac{\epsilon}{M}$, we see that, whenever $\theta\in K$ satisfies $|\theta-\phi|<\delta$, (*) holds. Since $\delta$ does not depend on $\phi$, the family $\Big(g_r\big|_K\Big)_{r=0}^\infty$ is uniformly equicontinuous.