My first answer showed that small $k$ play a major role in the sum. Since Stirling is an asymptotic approximation, the approximation for small $k$ was not be good enough. My second answer showed that Stirling should be used for $n!$ and $(n-k)!$ since they will be large. My third approach overvalued $\left(1-\frac{k}{n}\right)^{m-1/2}$. This approach uses the series for the Lambert W function given in $(9)$ and approximations given in $(10)$.
$$
\begin{align}
&\sum_{k=1}^nk^{k-1}\binom{n}{k}\frac{(n-k)^{n+m-k}}{n^{n+m-1}}\\
&=\sum_{k=1}^n\left(1+O\left(\frac{k}{n^2}\right)\right)\frac{n^{n+1/2}}{(n-k)^{n-k+1/2}}\frac{k^{k-1}}{k!\,e^k}\frac{(n-k)^{n+m-k}}{n^{n+m-1}}\\
&=n\sum_{k=1}^n\left(1+O\left(\frac{k}{n^2}\right)\right)\frac{k^{k-1}}{k!\,e^k}\left(1-\frac{k}{n}\right)^{m-1/2}\tag{11}
\end{align}
$$
If we let $\alpha=\dfrac{m-1/2}{n}$, then $\left(1-\dfrac{k}{n}\right)^{m-1/2}\le e^{-k\alpha}$. Therefore, using the approximation for $\mathrm{W}'(x)$ given in $(10)$, we get
$$
\begin{align}
n\sum_{k=1}^n\frac{k}{n^2}\frac{k^{k-1}}{k!\,e^k}\left(1-\frac{k}{n}\right)^{m-1/2}
&\le\frac1n\sum_{k=1}^nk\frac{k^{k-1}}{k!\,e^{k(1+\alpha)}}\\
&=\frac1n\mathrm{W}'(-e^{-1-\alpha})\\
&\le\frac1n\frac{e^2}{\sqrt{2\alpha}}\\
&=\frac{e^2}{\sqrt{(2m-1)n}}\tag{12}
\end{align}
$$
Thus, the big-O term in $(11)$ is insignificant. Using the series for $\mathrm{W}(x)$ from $(9)$ and remembering that $\mathrm{W}(-1/e)=-1$
$$
\begin{align}
n\sum_{k=1}^n\frac{k^{k-1}}{k!\,e^k}\left(1-\frac{k}{n}\right)^{m-1/2}
&=n\sum_{k=1}^n\frac{k^{k-1}}{k!\,e^k}\\
&-n\sum_{k=1}^n\frac{k^{k-1}}{k!\,e^k}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\\
&=n-n\sum_{k=n+1}^\infty\frac{k^{k-1}}{k!\,e^k}\\
&-n\sum_{k=1}^n\frac{k^{k-1}}{k!\,e^k}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\tag{13}
\end{align}
$$
Now we can use Stirling to approximate $\dfrac{k^{k-1}}{k!\,e^k}=\dfrac{k^{-3/2}}{\sqrt{2\pi}} +O\left(k^{-5/2}\right)$.
First, we evaluate the tail from the first sum in $(13)$
$$
\begin{align}
n\sum_{k=n+1}^\infty\frac{k^{k-1}}{k!\,e^k}
&=n\sum_{k=n+1}^\infty\left(\frac{k^{-3/2}}{\sqrt{2\pi}}+O\left(k^{-5/2}\right)\right)\\[6pt]
&=\frac{2\,n^{1/2}}{\sqrt{2\pi}}+O\left(n^{-1/2}\right)\tag{14}
\end{align}
$$
Next, the error term in the second sum in $(13)$
$$
\begin{align}
&n\sum_{k=1}^nk^{-5/2}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\\
&\le\left(\sum_{n=1}^\infty k^{-3/2}\right) \,\sup_k\left\{\frac{n}{k}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\right\}\\[6pt]
&\le\zeta(3/2)(m-1/2)\tag{15}
\end{align}
$$
Finally, the main term in the second sum in $(13)$ is a Riemann Sum in disguise
$$
\begin{align}
&n\sum_{k=1}^n\dfrac{k^{-3/2}}{\sqrt{2\pi}}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\\
&=\frac{n^{1/2}}{\sqrt{2\pi}}\sum_{k=1}^n\left(\frac{k}{n}\right)^{-3/2}\left(1-\left(1-\frac{k}{n}\right)^{m-1/2}\right)\frac1n\\
&\sim\frac{n^{1/2}}{\sqrt{2\pi}}\int_0^1x^{-3/2}\left(1-(1-x)^{m-1/2}\right)\,\mathrm{d}x\\
&=\frac{2\,n^{1/2}}{\sqrt{2\pi}}\int_0^{\pi/2}\frac{\cos(u)-\cos^{2m}(u)}{\sin^2(u)}\,\mathrm{d}u\\
&=\frac{2\,n^{1/2}}{\sqrt{2\pi}}\int_0^{\pi/2}\left(-1+\sum_{k=0}^{2m-1}\cos^k(u)\right)\frac{\mathrm{d}u}{1+\cos(u)}\\
&=\frac{2\,n^{1/2}}{\sqrt{2\pi}}\int_0^{\pi/2}\left(-\frac1{1+\cos(u)}+\sum_{k=0}^{m-1}\cos^{2k}(u)\right)\,\mathrm{d}u\\
&=-\frac{2n^{1/2}}{\sqrt{2\pi}}+\frac{2\,n^{1/2}}{\sqrt{2\pi}}\sum_{k=0}^{m-1}\int_0^{\pi/2}\cos^{2k}(u)\,\mathrm{d}u\\
&=-\frac{2n^{1/2}}{\sqrt{2\pi}}+\frac{2\,n^{1/2}}{\sqrt{2\pi}}\sum_{k=0}^{m-1}\frac\pi2\frac1{4^k}\binom{2k}{k}\\
&=-\frac{2n^{1/2}}{\sqrt{2\pi}}+\frac{\pi\,n^{1/2}}{\sqrt{2\pi}}\frac{2m}{4^m}\binom{2m}{m}\tag{16}
\end{align}
$$
The last step uses the identity $\displaystyle\sum_{k=0}^{m-1}\frac1{4^k}\binom{2k}{k}=\frac{2m}{4^m}\binom{2m}{m}$.
Putting together $(11)-(14)$ yields
$$
n+m-\sum_{k=1}^nk^{k-1}\binom{n}{k}\frac{(n-k)^{n+m-k}}{n^{n+m-1}}=\sqrt{2\pi n}\frac{m}{4^m}\binom{2m}{m}+O(m-1/2)\tag{17}
$$
Using Stirling to approximate $\dfrac1{4^m}\binom{2m}{m}\sim\dfrac1{\sqrt{\pi m}}$, $(17)$ gives, for large $m$,
$$
n+m-\sum_{k=1}^nk^{k-1}\binom{n}{k}\frac{(n-k)^{n+m-k}}{n^{n+m-1}}
\sim\sqrt{2mn}\tag{18}
$$
as my earlier answers did.
Further Considerations
The case where $m=\alpha n$, for some constant $\alpha$, cannot be handled by $(17)$ since the error term is $O(m)=O(\alpha n)$ and that would be similar in size to $\sqrt{2mn}=\sqrt{2\alpha}n$. To handle this case, we start with the sum at the beginning of $(13)$
$$
\begin{align}
n\sum_{k=1}^n\frac{k^{k-1}}{k!\,e^k}\left(1-\frac{k}{n}\right)^{m-1/2}
&\sim n\sum_{k=1}^\infty\frac{k^{k-1}}{k!\,e^{k(1+\alpha)}}\\
&=-n\mathrm{W}(-e^{-1-\alpha})
\end{align}
$$
Thus,
$$
n+m-\sum_{k=1}^nk^{k-1}\binom{n}{k}\frac{(n-k)^{n+m-k}}{n^{n+m-1}}
\sim n(1+\alpha+\mathrm{W}(-e^{-1-\alpha}))\tag{19}
$$
For $m=n$, where $\alpha=1$, this is $n\left(2+\mathrm{W}(-e^{-2})\right)=n\,1.84140566043696063785$
Derivation of the series for $\mathrm{W}(x)$
Here is an identity we will use later
$$
\begin{align}
&\sum_{k=1}^{n-1}\binom{n-1}{k-1}k^{k-1}(n-k)^{n-k-1}\\
&=\sum_{k=1}^{n-1}\binom{n-1}{k-1}k^{k-1}\sum_{j=0}^{n-k-1}\binom{n-k-1}{j}n^{j}(-1)^{n-k-j-1}k^{n-k-j-1}\tag{1}\\
&=\sum_{j=0}^{n-2}n^{j}(-1)^{n-j-1}\sum_{k=1}^{n-j-1}\binom{n-1}{k-1}(-1)^k\binom{n-k-1}{j}k^{n-j-2}\tag{2}\\
&=\sum_{j=0}^{n-2}n^{j}(-1)^{n-j-1}\sum_{k=1}^{n-1}\binom{n-1}{k-1}(-1)^k\binom{n-k-1}{j}k^{n-j-2}\tag{3}\\
&=\sum_{j=0}^{n-2}n^{j}(-1)^{n-j-1}\binom{n-1}{n-1}(-1)^{n-1}\binom{-1}{j}n^{n-j-2}\tag{4}\\
&=(n-1)n^{n-2}\tag{5}
\end{align}
$$
$(1)$: binomial theorem
$(2)$: change order of summation
$(3)$: add terms where $\binom{n-k-1}{j}=0$
$(4)$: $\sum\limits_{k=1}^n\binom{n-1}{k-1}(-1)^k\binom{n-k-1}{j}k^{n-j-2}=0$ since $\binom{n-k-1}{j}k^{n-j-2}$ is a degree $n-2$ polynomial in $k$
$(5)$: each term in the sum was $n^{n-2}$
Taking the log-derivative of $we^w=x$ gives $\frac{w'}{w}+w'=\frac1x$ which yields the equation
$$
w=w'(1+w)x\tag{6}
$$
from which we will derive a recursion for the power series for $\mathrm{W}(x)$. Suppose that
$$
\mathrm{W}(x)=\sum_{n=1}^\infty\frac{a_n}{n!}x^n\tag{7}
$$
Using $we^w=x$ and equations $(6)$ and $(7)$, we get that $a_k$ satisfy $a_0=0$, $a_1=1$, and
$$
\begin{align}
\frac{a_n}{n!}
&=n\frac{a_n}{n!}
+\sum_{k=1}^{n-1}k\frac{a_k}{k!}\frac{a_{n-k}}{(n-k)!}\\
-(n-1)\,a_n
&=\sum_{k=1}^{n-1}\binom{n}{k}k\,a_ka_{n-k}\\
&=\sum_{k=1}^{n-1}\binom{n-1}{k-1}n\,a_ka_{n-k}\\
a_n
&=-\frac{n}{n-1}\sum_{k=1}^{n-1}\binom{n-1}{k-1}a_ka_{n-k}\tag{8}
\end{align}
$$
Putting together $(5)$ and $(8)$, we get that
$$
\mathrm{W}(x)=\sum_{n=1}^\infty\frac{(-n)^{n-1}}{n!}x^n\tag{9}
$$
Behavior of $\mathrm{W}(x)$ for $x\sim-1/e$
For $\alpha$ near $0$,
$$
\begin{align}
\mathrm{W}\left(-e^{-1-\alpha}\right)
&\doteq-1+\sqrt{2\alpha}-\frac13\sqrt{2\alpha}^2+\frac7{36}\sqrt{2\alpha}^3\\
\mathrm{W}'\left(-e^{-1-\alpha}\right)
&\doteq\frac{e^{1+\alpha}}{\sqrt{2\alpha}}\left(1-\frac23\sqrt{2\alpha}-\frac1{12}\sqrt{2\alpha}^2\right)\\
\mathrm{W}''\left(-e^{-1-\alpha}\right)
&\doteq-\frac{e^{2+2\alpha}}{\sqrt{2\alpha}^3}\left(1-\frac{19}{12}\sqrt{2\alpha}^2\right)
\end{align}\tag{10}
$$
$$ n^n = \dfrac{n! e^{n-\lambda_n}}{\sqrt{2\pi n}}$$
where $\frac{1}{12n+1} \lt \lambda_n \lt \frac{1}{12n}$
– Aryabhata Apr 15 '13 at 07:42