Let $f:D\to\mathbb{R}$ be a function with $D\subseteq\mathbb{R}$. In calculus, one usually assumes that $D=\mathbb{R}$ or $D\subset\mathbb{R}$ is an interval defined as one of the cases below.
\begin{align*} [a,b]&=\{x\in\mathbb{R}|a\leq x\leq b\}, \quad && [b,+\infty)=\{x\in\mathbb{R}|x\ge b\}, \\ [a,b)&=\{x\in\mathbb{R}|a\leq x< b\}, \quad && (b,+\infty)=\{x\in\mathbb{R}|x> b\}, \\ (a,b]&=\{x\in\mathbb{R}|a< x\leq b\}, \quad && (-\infty,a)=\{x\in\mathbb{R}|x< a\}, \\ (a,b)&=\{x\in\mathbb{R}|a< x< b\}, \quad && (-\infty,a]=\{x\in\mathbb{R}|x\leq a\}. \end{align*}
Definition. Suppose that the following limit exists
$$\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=L,\tag{1}$$
where $L\in\mathbb{R}$. Then, derivative of $f$ at point $x\in D$ is defined to be $Df(x):=L$. An equivalent definition follows from the change of variables in limits, e.g., Theorem 2 in this post.
$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x},\tag{2}$$
The $\epsilon-\delta$ translation for the definition in $(1)$ is
$$\exists L \in \mathbb{R},\,\,\forall\epsilon>0,\,\,\exists\delta>0,\,\forall t\in \big(D\cap B_{\mathbb{R}}(x,\delta)\big)-\{x\} \implies \frac{f(t)-f(x)}{t-x}\in B_\mathbb{R}(L,\epsilon).$$
I usually see in real analysis books that one defines the derivative for interior points of $D$. However, looking at $(3)$, I don't understand why such a restriction is usually made. As an example, consider $D=[a,b)$ and let $x=a$. The above definition then turns into
$$\exists L \in \mathbb{R},\,\,\forall\epsilon>0,\,\,\exists\delta>0,\,\forall t\in\big([a,b)\cap B_{\mathbb{R}}(a,\delta)\big)-\{a\} \implies \frac{f(t)-f(a)}{t-a}\in B_\mathbb{R}(L,\epsilon),$$
which by assuming that $0<\delta <b-a$ is equivalent to
$$\exists L \in \mathbb{R},\,\,\forall\epsilon>0,\,\,\exists\delta>0,\,\forall t\in(a,a+\delta) \implies \frac{f(t)-f(a)}{t-a}\in B_\mathbb{R}(L,\epsilon),\tag{3}$$
that I think totally makes sense. Is there any specific reason for confining derivative to interior points? Can some well-known theorems in calculus fail if we don't consider such a restriction?