$$
\begin{align}
\sum_{k=0}^{n-1}\frac{e^{\frac{2\pi ik}{n}}}{3-e^{\frac{2\pi ik}{n}}}
&=\sum_{k=0}^{n-1}\frac{\frac13e^{\frac{2\pi ik}{n}}}{1-\frac13e^{\frac{2\pi ik}{n}}}\tag1\\
&=\sum_{m=1}^\infty\sum_{k=0}^{n-1}\frac1{3^m}e^{\frac{2\pi ikm}{n}}\tag2\\
&=\sum_{m=1}^\infty\frac1{3^m}n\,[n\mid m]\tag3\\
&=\sum_{j=1}^\infty\frac1{3^{jn}}n\tag4\\[6pt]
&=\frac{n}{3^n-1}\tag5
\end{align}
$$
Explanation:
$(1)$: cancel $3$ in numerator and denominator
$(2)$: use the Taylor series $\frac{x}{1-x}=\sum\limits_{k=1}^\infty x^k$
$(3)$: $\sum\limits_{k=0}^{n-1}e^{\frac{2\pi ikm}{n}}=n\,[n\mid m]$ (Iverson brackets)
$(4)$: select the terms where $m=jn$
$(5)$: sum the geometric series
Explanation of step $\boldsymbol{(3)}$
Note that the sum of the following finite geometric series
$$
\sum\limits_{k=0}^{n-1}e^{\frac{2\pi ikm}{n}}=\frac{e^{\frac{2\pi inm}{n}}-1}{e^{\frac{2\pi im}{n}}-1}=\frac0{e^{\frac{2\pi im}{n}}-1}\tag6
$$
shows that if $n\nmid m$,
$$
\sum\limits_{k=0}^{n-1}e^{\frac{2\pi ikm}{n}}=0\tag7
$$
It is pretty simple to see that if $n\mid m$,
$$
\sum\limits_{k=0}^{n-1}e^{\frac{2\pi ikm}{n}}=\sum\limits_{k=0}^{n-1}1=n\tag8
$$