If the question is about finding the limit, let's consider $a_{n+1}=f(a_n)$, where $f(x)=\sqrt{2-x}$. Then we have
If $0\leq x \leq \sqrt{2}$ then $0\leq f(x)\leq\sqrt{2}$
Indeed $0\leq x\leq\sqrt{2}
\Rightarrow 0\geq-x \geq -\sqrt{2}
\Rightarrow 2\geq 2-x \geq 2-\sqrt{2}>0
\Rightarrow \sqrt{2}\geq \sqrt{2-x}=f(x)\geq 0$.
Now, let's use Banach fixed-point theorem, and MVT, given $f'(x)=-\frac{1}{2\sqrt{2-x}}$, for $\forall x,y \in[0,\sqrt{2}], x<y$, there $\exists\varepsilon\in (x,y)$ s.t.
$$|f(x)-f(y)|=|f'(\varepsilon)|\cdot |x-y|=
\frac{1}{2\sqrt{2- \varepsilon}}\cdot|x-y|<
\frac{1}{2\sqrt{2-\sqrt{2}}}\cdot|x-y|$$
since $\varepsilon\in[0,\sqrt{2}]$ as well. It's not to difficult to check that $0<\frac{1}{2\sqrt{2-\sqrt{2}}}<1$.
So, the limit exists and you can legitimately use $L=\sqrt{2-L}$ to find it, considering that $L\in[0,\sqrt{2}]$ of course, since all $(a_n)_{n>0} \subset[0,\sqrt{2}]$.
Remark: More interesting results here.
The trick that is typically applied for the $+$ with $\cos$ may not easily apply for $\arcsin$ and $\sin$ since:
$$\sin{\frac{\pi}{8}}=\frac{1}{2}\sqrt{2-\sqrt{2}}$$
$$\sin{\frac{\pi}{16}}=\frac{1}{2}\sqrt{2-\sqrt{2\color{red}{+}\sqrt{2}}}$$
I'd rather try induction, given that
$$\sin{\frac{\color{red}{1}\cdot\pi}{4}}=\frac{\sqrt{2}}{2}$$
$$\sin{\frac{\color{red}{1}\cdot\pi}{8}}=\frac{1}{2}\sqrt{2-\sqrt{2}}$$
$$\sin{\frac{\color{red}{3}\cdot\pi}{16}}=\frac{1}{2}\sqrt{2-\sqrt{2-\sqrt{2}}}$$
$$\sin{\frac{\color{red}{5}\cdot\pi}{32}}=\frac{1}{2}\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2}}}}$$
$$\sin{\frac{\color{red}{11}\cdot\pi}{64}}=\frac{1}{2}\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2}}}}}$$
$$\sin{\frac{\color{red}{21}\cdot\pi}{128}}=\frac{1}{2}\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{2}}}}}}$$
where $\{1,1,3,5,11,21\}$ is the begining of the Jacobsthal sequence, according to OEIS.
And of course:
$$\sin^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=\frac{1}{2}\left(1-\sin{x}\right)\tag{1}$$
Jacobsthal sequence is $J_{n+1}=2^n-J_n$ and, assuming induction hypothesis, we have
$$\sqrt{\frac{1}{2}\left(1-\sin\left(\color{red}{J_n}\frac{\pi}{2^{n+1}}\right)\right)}=\\
\sqrt{\frac{1}{2}\left(1-\frac{1}{2}\sqrt{2-\sqrt{2-...-\sqrt{2-\sqrt{2}}}}\right)}=\\
\sqrt{\frac{1}{4}\left(2-\sqrt{2-\sqrt{2-...-\sqrt{2-\sqrt{2}}}}\right)}=\\
\frac{1}{2}\sqrt{2-\sqrt{2-\sqrt{2-...-\sqrt{2-\sqrt{2}}}}}\overset{(1)}{=}\\
\sin\left(\frac{\pi}{4}-J_n\frac{\pi}{2^{n+2}}\right)=
\sin\left(\left(2^n-J_n\right)\frac{\pi}{2^{n+2}}\right)=
\sin\left(\color{red}{J_{n+1}}\frac{\pi}{2^{n+2}}\right)$$
The positive sign of the square root above, while appling $(1)$, is justified by $\frac{\pi}{4}>\frac{\pi}{4}-J_n\frac{\pi}{2^{n+2}}>0$, where the $\sin$ function is positive. As a result:
$$2\sin\left(J_{n}\frac{\pi}{2^{n+1}}\right)=\underbrace{\sqrt{2-\sqrt{2-\sqrt{2-...-\sqrt{2-\sqrt{2}}}}}}_{n\text{ times}} \tag{2}$$
Jacobsthal sequence also has a closed form of
$$ J_n = \frac{2^n - (-1)^n}{3}$$
which can be solved using, for example, characteristic polynomials (more than half of the work is done here), leading to
$$2\sin\left(\frac{2^n-(-1)^n}{2^{n+1}}\cdot\frac{\pi}{3}\right)=\underbrace{\sqrt{2-\sqrt{2-\sqrt{2-...-\sqrt{2-\sqrt{2}}}}}}_{n\text{ times}} \tag{3}$$
Remark: It is worth noting this question is not duplicating this family of questions.