I found this interesting equation $$\sum_{n=0}^\infty \frac{1}{n^2+a^2}=\frac{1}{2a^2}\left(1+a\pi\frac{e^{a\pi}+e^{a\pi}}{e^{a\pi}-e^{a\pi}}\right)$$ at twitter. And I tried to prove it as below.
$$\begin{align} &\sum_{n=0}^\infty \frac{1}{n^2+a^2}\\ =&\frac{1}{2ai}\left(\sum_{n=0}^\infty \frac{1}{n-ai}-\frac{1}{n+ai}\right)\\ =&\frac{1}{2ai}\left(\sum_{n=0}^\infty \int_{0}^1 e^{(n-ai)x}-e^{(n+ai)x}dx\right)\\ =&\frac{1}{2ai}\int_{0}^1 \frac{e^{-aix}-e^{aix}}{1-e^x}dx\\ =&\frac{1}{a}\int_{0}^1 \frac{\sin(ax)}{1-e^x}dx\\ \end{align}$$
Now I need to evaluate $\frac{1}{a}\int_{0}^1 \frac{\sin(ax)}{1-e^x}dx$. According to wolfram alpha, this integration is very complicated.
Is there easier way to evaluate this integration?