$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that
$\ds{\int_{0}^{\infty}{\sin^{3}\pars{x} \over \expo{x} - 1}\,\dd x =
{3 \over 4}\int_{0}^{\infty}{\sin\pars{x} \over \expo{x} - 1}\,\dd x -
{1 \over 4}\int_{0}^{\infty}{\sin\pars{3x} \over \expo{x} - 1}\,\dd x}$
Lets apply the Abel-Plana Formula to the sum $\ds{\sum_{n = 0}^{\infty}\expo{-2\pi an}}$ where $\ds{a > 0}$.
Note that $\ds{\expo{-2\pi a\,\Re\pars{z} - 2\pi a\,\Im\pars{z}\ic}\expo{-2\pi\verts{a}\verts{\Im\pars{z}}} \to 0}$ as
$\ds{\Im\pars{z} \to \pm\infty}$.
\begin{align}
\left.\sum_{n = 0}^{\infty}\expo{-2\pi an}\right\vert_{\ a\ >\ 0} & =
\int_{0}^{\infty}\expo{-2\pi ax}\dd x +
\left.{1 \over 2}\expo{-2\pi an}\right\vert_{\ n\ =\ 0} -
2\int_{0}^{\infty}{\Im\pars{\expo{-2\pi a\pars{\ic x}}} \over \expo{2\pi x} - 1}\,\dd x
\\[5mm]
\implies{1 \over 1 - \expo{-2\pi a}} & =
{1 \over 2\pi a} + {1 \over 2} +
2\int_{0}^{\infty}{\sin\pars{2\pi ax} \over \expo{2\pi x} - 1}\,\dd x
\\[5mm]
\implies{1 \over 1 - \expo{-2\pi a}} & =
{1 \over 2\pi a} + {1 \over 2} +
{1 \over \pi}\int_{0}^{\infty}{\sin\pars{ax} \over \expo{x} - 1}\,\dd x
\\[5mm]
\implies &
\bbx{\int_{0}^{\infty}{\sin\pars{ax} \over \expo{x} - 1}\,\dd x =
{\pi a\coth\pars{\pi a} - 1 \over 2a}}
\end{align}
which leads to
$$
\bbx{\int_{0}^{\infty}{\sin^{3}\pars{x} \over \expo{x} - 1}\,\dd x =
{3 \over 8}\,\pi\coth\pars{\pi} - {1 \over 8}\,\pi\coth\pars{3\pi} - {1 \over 3}} \approx 0.4565
$$