This is part of Exercise I.4 of "Sheaves in Geometry and Logic [. . .]" by Mac Lane and Moerdijk.
The Question:
Exercise: Let $F: \mathbf{A}\to \mathbf{B}$ be an equivalence of categories. Prove that a subobject classifier for $\mathbf{A}$ yields one for $\mathbf{B}$.
The Details:
Here equivalence of categories is defined as follows.
Definition: A functor $F: \mathbf{A}\to \mathbf{B}$ is an equivalence of categories if for any $\mathbf{A}$-objects $A, A'$, we have that
$$\begin{align} {\rm Hom}_{\mathbf{A}}(A, A')&\to{\rm Hom}_{\mathbf{B}}(FA, FA')\\ p&\mapsto F(p) \end{align}$$
is a bijection and, moreover, any object of $\mathbf{B}$ is isomorphic to an object in the image of $F$.
A definition of a subobject classifier is given on page 32, ibid.
Definition: In a category $\mathbf{C}$ with finite limits, a subobject classifier is a monic, ${\rm true}:1\to\Omega$, such that to every monic $S\rightarrowtail X$ in $\mathbf{C}$ there is a unique arrow $\phi$ which, with the given monic, forms a pullback square
$$\begin{array}{ccc} S & \to & 1 \\ \downarrow & \, & \downarrow {\rm true}\\ X & \stackrel{\dashrightarrow}{\phi} & \Omega. \end{array}$$
My Attempt:
Let $F: \mathbf{A}\to \mathbf{B}$ be an equivalence of categories. Suppose ${\rm true}_{\mathbf{A}}:1_{\mathbf{A}}\to\Omega_{\mathbf{A}}$ is a subobject classifier of $\mathbf{A}$. Then there exists a functor $G:\mathbf{B}\to \mathbf{A}$ such that there are natural transformations $\alpha: F\circ G\stackrel{\sim}{\to}{\rm id}_{\mathbf{B}}$ and $\beta: G\circ F\stackrel{\sim}{\to}{\rm id}_{\mathbf{A}}$.
Showing $F$ of a terminal object is a terminal object . . .
Consider $Y\in{\rm Ob}(\mathbf{B})$ and $F(1_{\mathbf{A}})$. We have some $Y_{\mathbf{A}}\in{\rm Ob}(\mathbf{A})$ such that $F(Y_{\mathbf{A}})=Y$ (I'm not sure how to justify that) and
$$\begin{align} {\rm Hom}_{\mathbf{A}}(Y_{\mathbf{A}}, 1_{\mathbf{A}})&\to{\rm Hom}_{\mathbf{B}}(Y, F(1_{\mathbf{A}}))\\ p&\mapsto F(p) \end{align}$$
is a bijection. But $\lvert {\rm Hom}_{\mathbf{A}}(Y_{\mathbf{A}}, 1_{\mathbf{A}})\rvert=1$ as $1_{\mathbf{A}}$ is terminal. Hence $\lvert {\rm Hom}_{\mathbf{B}}(Y, F(1_{\mathbf{A}})\rvert=1.$ But $Y$ was arbitrary. Thus $F(1_{\mathbf{A}})$ is terminal in $\mathbf{B}$.
Showing $F$ of a monic is monic . . .
For any $M\stackrel{m}{\rightarrowtail} N$ monic in $\mathbf{A}$, for any $$L\overset{p}{\underset{q}{\rightrightarrows}}M\stackrel{m}{\rightarrowtail} N$$ such that if $m\circ p=m\circ q$, then $p=q$.
So $$[{\rm id}_{\mathbf{A}}(m\circ p)={\rm id}_{\mathbf{A}}(m\circ q)]\Rightarrow {\rm id}_{\mathbf{A}}(p)={\rm id}_{\mathbf{A}}(q);$$
that is,
$$[(G\circ F)(m\circ p)=(G\circ F)(m\circ q)]\Rightarrow (G\circ F)(p)=(G\circ F)(q);$$
then,
$$[F\circ(G\circ F)(m\circ p)=F\circ(G\circ F)(m\circ q)]\Rightarrow F\circ (G\circ F)(p)=F\circ (G\circ F)(q);$$
that is,
$$[(F\circ G)(F(m)\circ F(p))=(F\circ G)(F(m)\circ F(q))]\Rightarrow (F\circ G)(F(p))=(F\circ G)(F(q)).$$
But $F\circ G={\rm id}_{\mathbf{B}}$, so we have
$$[F(m)\circ F(p)=F(m)\circ F(q)]\Rightarrow F(p)=F(q),$$
so $F(M)\stackrel{F(m)}{\rightarrow}F(N)$ is monic in $\mathbf{B}$.
I'm not sure how to continue from here. It seems like the rest is diagram chasing but I want to understand it better than that.
Please help :)