Let $A \in M_3$. Prove that $A^2=0\Leftrightarrow \operatorname{tr}(A)=0,\operatorname{rank}(A)\le 1$
I can easily prove $\operatorname{tr}(A)=0,\,\operatorname{rank}(A)\le 1 \Rightarrow A^2=0$ since $\operatorname{rank}(A)\le 1 \Rightarrow A^2=\operatorname{tr}(A)A$.
For $A^2=0 \Rightarrow \operatorname{tr}(A)=0, \operatorname{rank}(A)\le 1$, I prove $\operatorname{tr}(A)=0$ by proving eigenvalues of a nilpotent matrix are zeros, but for $\operatorname{rank}\le 1$ I have no idea.
Can anyone give me a hint?