Let be $\eta:\mathcal{P}(X)\rightarrow\mathcal{P}(X)$ a function such that:
- $\eta(\varnothing)=\varnothing$;
- $\eta(\eta(A))\subseteq\eta(A)$ for any $A\subseteq X$;
- $\eta(A\cup B)\subseteq \eta(A)\cup \eta(X\setminus B)$ for any $A,B\subseteq X$;
- $\eta(A\cap B)\subseteq A\cup B\cup \eta(A\cup B)$ for any $A,B\subseteq X$.
So putting $$ \tau*=\{A\subseteq X: \eta(A)\subseteq A\} $$ we let to prove that the collection $$ \tau=\{V\subseteq X: X\setminus V\in\tau*\} $$ is a topology on X equal to $\tau$ and such that $$ \eta(A)=\operatorname{bd} A $$ for any $A\in\mathcal P(X)$
So previously we observe that $$ \eta(A)=\eta(X\setminus A) $$ since the third point implies that $$ \eta(A)=\eta(\varnothing\cup A)\subseteq\eta(\varnothing)\cup \eta(X\setminus A)=\eta(X\setminus A)\\\text{and}\\\eta(X\setminus A)=\eta(\varnothing\cup X\setminus A)\subseteq\eta(\varnothing)\cup\eta(X\setminus(X\setminus A))=\eta(A) $$
Well to show that the operator $\eta$ is the boundary operator for $\tau$ I thought up to defining the operator $$ \theta:\mathcal{P}(X)\owns A\rightarrow \big(A\cup \eta(A)\big)\in\mathcal{P}(X) $$ so that I tried to show that it is a Kuratowski operator because in this case the identity $$ \operatorname{bd} A= \operatorname{cl}{A}\cap\operatorname{cl}({X\setminus A})= (A\cup\eta(A))\cap(X\setminus A\cup\eta(X\setminus A))=\\(A\cup\eta(A))\cap(X\setminus A\cup\eta(A))= ((A\cup\eta(A))\cap X\setminus A)\cup((A\cup\eta(A))\cap\eta(A))=\\ ((A\cap X\setminus A)\cup(\eta(A)\cap X\setminus A))\cup((A\cap\eta(A))\cup(\eta(A)\cap\eta(A))=\\ (\varnothing\cup(\eta(A)\cap X\setminus A))\cup((A\cap\eta(A))\cup\eta(A))=(\eta(A)\cap X\setminus A)\cup \eta(A)= \eta(A) $$ would holds.
So to do this I must demonstrate that:
- $\theta(\varnothing)=\varnothing$;
- $A\subseteq\theta(A)$ for any ${A}\subseteq{X}$;
- $\theta(\theta(A))=\theta(A)$ for any ${A}\subseteq{X}$;
- $\theta(A\cup{B})=\theta(A)\cup\theta(B)$ for any $A,B\subseteq{X}$.
Well let's start to prove the property 1-4 of $\theta$:
So first of all we observe that $$ \theta(\varnothing)=\varnothing\cup\eta(\varnothing)=\varnothing $$
Then we observe that $$ A\subseteq A\cup\eta(A)=\theta(A) $$
Now we first observe that $$ \theta(\theta(A))= \theta(A\cup\eta(A))=\\ (A\cup\eta(A))\cup\eta(A\cup\eta(A))\subseteq (A\cup\eta(A))\cup(\eta(A)\cup\eta(X\setminus\eta(A)))=\\(A\cup\eta(A))\cup(\eta(A)\cup\eta(\eta(A)))=\\(A\cup\eta(A))\cup\eta(\eta(A))\subseteq {A}\cup\eta(A)\cup\eta(A)= A\cup\eta(A)= \theta(A)$$ and then we observe that $$ A\cup\theta(A)=A\cup(A\cup\eta(A))=A\cup\eta(A)=\theta(A) $$ i so that we conclude that $$ \theta(A)\subseteq\theta(A)\cup\theta(\theta(A))=\theta(\theta(A)) $$
So finally we observe that $$ \theta(A\cup B)=(A\cup B)\cup\eta(A\cup B)\subseteq(A\cup B)\cup(\eta(A)\cup\eta(X\setminus B))=(A\cup B)\cup(\eta(A)\cup\eta(B))=(A\cup\eta(A))\cup(B\cup\eta(B))=\theta(A)\cup\theta(B) $$
Unfortunately how you can observe I'm not be able to demonstrate the inclusion $$ \theta(A)\cup\theta(B)\subseteq\theta(A\cup B) $$ so that I ask if it is possible that the position $$ \theta(A):=A\cup\eta(A) $$ is uncorrect. Could someone help me, please?