2

Let be $\eta:\mathcal{P}(X)\rightarrow\mathcal{P}(X)$ a function such that:

  1. $\eta(\varnothing)=\varnothing$;
  2. $\eta(\eta(A))\subseteq A\cup\eta(A)$, for any $A\subseteq X$;
  3. $\eta(A\cup B)=\eta(A)\cup\eta(B)$, for any $A,B\subseteq X$;
  4. $x\notin \eta(\{x\})$, for any $x\in X$.

So putting $$ \tau*=\{A\subseteq X: \phi(A)\subseteq A\} $$ I am trying to prove that the collection $$ \tau=\{V\subseteq X:X\setminus V\in\tau*\} $$ is a topology on $X$ equal to $\tau^*$ and such that $$ \eta(A)=\operatorname{der}A $$ for any $A\in\mathcal P(X)$.

Well to prove the statement we define $$ \theta:\mathcal{P}(X)\owns A\rightarrow\big(A\cup\eta(A)\big)\in\mathcal{P}(X) $$ so that we let to prove that $\theta$ is a Kuratowski operator. So to do this we have to demonstrate that

  1. $\theta(\varnothing)=\varnothing$;
  2. $A\subseteq\theta(A)$ for any ${A}\subseteq{X}$;
  3. $\theta(\theta(A))=\theta(A)$ for any ${A}\subseteq{X}$;
  4. $\theta(A\cup{B})=\theta(A)\cup\theta(B)$ for any $A,B\subseteq{X}$.

Well let's start to prove this:

  1. first of all we observe that $$ \theta(\varnothing)=\varnothing\cup\eta(\varnothing)=\varnothing $$ so that $1$ holds;
  2. then we observe that $$ A\subseteq A\cup\eta(A)=\theta(A) $$ so that $2$ holds;
  3. moreover we observe that $$ \theta(\theta(A))= \theta(A\cup\eta(A))= (A\cup\eta(A))\cup\eta(A\cup\eta(A))=\\(A\cup\eta(A))\cup(\eta(A)\cup\eta(\eta(A)))= A\cup\eta(A)\cup\eta(\eta(A))= A\cup\eta(A)= \theta(A) $$ so that $3$ holds;
  4. finally we observe that $$ \theta(A\cup B)=(A\cup B)\cup\eta(A\cup B)=A\cup\eta(A)\cup B\cup\eta(B)=\theta(A)\cup\theta(B) $$ so that $4$ holds.

Well we proved that $\theta$ is a kuratowski operator so we have $$ \theta(A)=\operatorname{cl}A $$ that is $$ A\cup\eta(A)=A\cup\mathscr{der}(A) $$ for any $A\subseteq X$: could I argue from this that the identity $$ \eta(A)=\mathscr{der}(A) $$ holds? if not how to prove it?

Could someone help me, please?

1 Answers1

2

No, you can't argue so, because condition 4. was not used, and without that your reasoning would also work for the closure operator $\eta:=\theta$ itself, concluding that closure is always the same as the derived set.
Nevertheless, $A\cup B=A\cup C$ implies $B\setminus A\subseteq C$ and $C\setminus A\subseteq B$, which will be used below.

If $x\in A\setminus \mathrm{der}(A)$, then there is an open $U\ni x$ such that $U\cap A=\{x\}$, then $\eta(A\setminus U) \subseteq \theta(A\setminus U) \subseteq \theta(X\setminus U) =X\setminus U$, which in particular doesn't contain $x$, so by conditions 3. and 4. for $\eta$, we get $$x\notin \eta(A\cap U)\cup\eta(A\setminus U) =\eta(A)\,.$$

If $x\notin{\rm der}(A)$ then the case $x\in A$ was just concluded, and in the case $x\notin A$, we have $x\notin \bar A=A\cup \eta(A)$, thus again $x\notin \eta(A)$.

These imply $\eta(A)\subseteq {\rm der}(A)$.

For the other direction, we have ${\rm der}(A)\setminus A=\bar A\setminus A\subseteq \eta(A)$ for any set $A$.
So, let $a\in{\rm der}(A)\cap A$, but then, for $B:=A\setminus\{a\}$, we still have $a\in{\rm der}(B)$, so we can apply the above observation to obtain $a\in\eta(B)$, and conclude by $\eta(A) =\eta(B) \cup\eta(\{a\})$.

Berci
  • 90,745
  • Well $x\notin \eta(A\setminus U)\cup\eta({x})=\eta(A\setminus U)\cup\eta(A\cap U)=\eta(A\setminus U\cup A\cap U)=\eta(A)$ and so $${x\in A\setminus\mathscr{der}(A)\rightarrow x\notin \eta(A)}\Rightarrow{x\in A\setminus\mathscr{der}(A)\rightarrow x\notin \eta(A)\wedge x\in A}\Rightarrow{x\in A\setminus\mathscr{der}(A)\rightarrow x\in A\setminus\eta(A)}\Rightarrow A\setminus\mathscr{der}(A)\subseteq A\setminus\eta(A)\Rightarrow A\cap\eta(A)=A\setminus(A\setminus\eta(A))\subseteq A\setminus(A\setminus\mathscr{der}(A))=A\cap\mathscr{der}(A)$$, and form this what can I argue? – Antonio Maria Di Mauro Feb 14 '20 at 21:53
  • Apparentely I can't argue that $\eta(A)\subseteq\mathscr{der}(A)!$ Then with the other inclusion, that is $A\setminus\eta(A)\subseteq A\setminus\mathscr{der}(A)$, I only proved that$A\cap\eta(A)=A\cap\mathscr{der}(A)$, and form this how could I argue that $\eta(A)\equiv\mathscr{der}(A)$? Could you explain better, please? Then it seems I don't be able to prove the oder implication, excuse me: so could you do it, please? – Antonio Maria Di Mauro Feb 14 '20 at 21:53
  • I don't understand your first question. My answer shows $\eta(A)\subseteq {\rm der}(A)$ by the contrapositive. If $x\notin{\rm der}(A)$ then either $x\notin\bar A=A\cup\eta(A)$ when $x\notin\eta(A)$, or $x\in A\setminus{\rm der}A$ when $x\notin\eta(A)=\eta(A\setminus U)\cup\eta(A\cap U)$. As for the other direction, I got uncertain. – Berci Feb 14 '20 at 23:36
  • So we know that
    $$ x\notin\eta(A\setminus U)\wedge x\notin\eta({x})\Rightarrow x\notin \eta(A\setminus U)\cup\eta({x})=\eta(A\setminus U)\cup\eta(A\cap U)=\eta(A\setminus U\cup A\cap U)=\eta(A) $$
    – Antonio Maria Di Mauro Feb 15 '20 at 12:55
  • and so $${x\in A\setminus\mathscr{der}(A)\rightarrow x\notin \eta(A)}\Rightarrow{x\in A\setminus\mathscr{der}(A)\rightarrow x\notin \eta(A)\wedge x\in A}\Rightarrow{x\in A\setminus\mathscr{der}(A)\rightarrow x\in A\setminus\eta(A)}\Rightarrow A\setminus\mathscr{der}(A)\subseteq A\setminus\eta(A)\Rightarrow A\cap\eta(A)=A\setminus(A\setminus\eta(A))\subseteq A\setminus(A\setminus\mathscr{der}(A))=A\cap\mathscr{der}(A)$$ – Antonio Maria Di Mauro Feb 15 '20 at 12:55
  • Well $$\eta(A)\subseteq A\cup\eta(A)=\overline{A}=A\cup\mathscr{der}(A)\Rightarrow\eta(A)=(A\cap\eta(A))\cup(\mathscr{der}(A)\cap\eta(A))\subseteq(A\cap\mathscr{der}(A))\cup(\eta(A)\cap\mathscr{der}(A))=(A\cup\eta(A))\cap\mathscr{der}(A)=\overline{A}\cap\mathscr{der}(A)=\mathscr{der}(A) $$ is it right? Well you can't prove the other inclusion? – Antonio Maria Di Mauro Feb 15 '20 at 12:56
  • Indeed if you prove that $$ A\setminus\eta(A)\subseteq A\setminus\mathscr{der}(A) $$ then as soon as shown it turns out that $$ A\setminus\eta(A)=A\setminus\mathscr{der}(A) $$ that is $$ A\cap\eta(A)=A\setminus(A\setminus\eta(A))=A\setminus(A\setminus\mathscr{der}(A))=A\cap\mathscr{der}(A) $$ and so as soon as shown above it result that $$\eta(A)=(A\cap\eta(A))\cup(\mathscr{der}(A)\cap\eta(A))=(A\cap\mathscr{der}(A))\cup(\eta(A)\cap\mathscr{der}(A))=(A\cup\eta(A))\cap\mathscr{der}(A)=\overline{A}\cap\mathscr{der}(A)=\mathscr{der}(A)$$ could you help me, please? – Antonio Maria Di Mauro Feb 15 '20 at 13:12
  • I updated my answer with the other direction. My original sketch I had in mind for that didn't work. Is the first inclusion clear? – Berci Feb 15 '20 at 13:49
  • Well I understeand the first inclusion, that is $\eta(A)\subseteq\mathscr{der}(A)$; but unfortunately in the second step of the proof I don't understeand the passage $x\in\mathscr{der}(B)\Rightarrow x\in\eta(B)$ so could you explain better? – Antonio Maria Di Mauro Feb 15 '20 at 21:29
  • 1
    We start with $a\in A\cap{\rm der}(A)$. Because of the definition of derived point, we get $a\in{\rm der}(B)$ with $B=A\setminus{a}$ but $a\notin B$, so we have $a\in {\rm der}(B)\setminus B$ which is $\subseteq \eta(B)\subseteq \eta(A)$. – Berci Feb 15 '20 at 21:36
  • Okay, so to summarise step by step we have: $x\in\mathscr{der}(A)\Rightarrow x\in\mathscr{der}(A\setminus{x})$ so it result $$ x\in\mathscr{der}(A)\cap A\Rightarrow x\in\mathscr{der}(A\setminus{x})\cap\ A\subseteq\mathscr{der}(A\setminus{x}) $$ but then it result that $$ x\in\mathscr{der}(A\setminus{x})\wedge x\notin(A\setminus{x})\Rightarrow x\in\mathscr{der}(A\setminus{x})\setminus(A\setminus{x})\subseteq\eta(A\setminus{x})\subseteq\eta(A) $$ – Antonio Maria Di Mauro Feb 15 '20 at 22:16
  • therefore $$ {x\in\mathscr{der}(A)\cap A\rightarrow x\in\eta(A)}\Rightarrow \mathscr{der}(A)\cap A\subseteq\eta(A)\Rightarrow\mathscr{der}(A)\cap A\subseteq\eta(A)\cap A $$ and so, since from the first step of the proof we know that $\eta(A)\cap A\subseteq\mathscr{der}(A)\cap A$, we conclude that $$\eta(A)\cap A=\mathscr{der}(A)\cap A$$ – Antonio Maria Di Mauro Feb 15 '20 at 22:16
  • so finally we have $$\eta(A)\subseteq A\cup\eta(A)=\overline{A}=A\cup\mathscr{der}(A)\Rightarrow\eta(A)=(A\cap\eta(A))\cup(\mathscr{der}(A)\cap\eta(A))=(A\cap\mathscr{der}(A))\cup(\eta(A)\cap\mathscr{der}(A))=(A\cup\eta(A))\cap\mathscr{der}(A)=\overline{A}\cap\mathscr{der}(A)=\mathscr{der}(A) $$ is it right? – Antonio Maria Di Mauro Feb 15 '20 at 22:16