Let be $\eta:\mathcal{P}(X)\rightarrow\mathcal{P}(X)$ a function such that:
- $\eta(\varnothing)=\varnothing$;
- $\eta(\eta(A))\subseteq A\cup\eta(A)$, for any $A\subseteq X$;
- $\eta(A\cup B)=\eta(A)\cup\eta(B)$, for any $A,B\subseteq X$;
- $x\notin \eta(\{x\})$, for any $x\in X$.
So putting $$ \tau*=\{A\subseteq X: \phi(A)\subseteq A\} $$ I am trying to prove that the collection $$ \tau=\{V\subseteq X:X\setminus V\in\tau*\} $$ is a topology on $X$ equal to $\tau^*$ and such that $$ \eta(A)=\operatorname{der}A $$ for any $A\in\mathcal P(X)$.
Well to prove the statement we define $$ \theta:\mathcal{P}(X)\owns A\rightarrow\big(A\cup\eta(A)\big)\in\mathcal{P}(X) $$ so that we let to prove that $\theta$ is a Kuratowski operator. So to do this we have to demonstrate that
- $\theta(\varnothing)=\varnothing$;
- $A\subseteq\theta(A)$ for any ${A}\subseteq{X}$;
- $\theta(\theta(A))=\theta(A)$ for any ${A}\subseteq{X}$;
- $\theta(A\cup{B})=\theta(A)\cup\theta(B)$ for any $A,B\subseteq{X}$.
Well let's start to prove this:
- first of all we observe that $$ \theta(\varnothing)=\varnothing\cup\eta(\varnothing)=\varnothing $$ so that $1$ holds;
- then we observe that $$ A\subseteq A\cup\eta(A)=\theta(A) $$ so that $2$ holds;
- moreover we observe that $$ \theta(\theta(A))= \theta(A\cup\eta(A))= (A\cup\eta(A))\cup\eta(A\cup\eta(A))=\\(A\cup\eta(A))\cup(\eta(A)\cup\eta(\eta(A)))= A\cup\eta(A)\cup\eta(\eta(A))= A\cup\eta(A)= \theta(A) $$ so that $3$ holds;
- finally we observe that $$ \theta(A\cup B)=(A\cup B)\cup\eta(A\cup B)=A\cup\eta(A)\cup B\cup\eta(B)=\theta(A)\cup\theta(B) $$ so that $4$ holds.
Well we proved that $\theta$ is a kuratowski operator so we have $$ \theta(A)=\operatorname{cl}A $$ that is $$ A\cup\eta(A)=A\cup\mathscr{der}(A) $$ for any $A\subseteq X$: could I argue from this that the identity $$ \eta(A)=\mathscr{der}(A) $$ holds? if not how to prove it?
Could someone help me, please?