$$\cos\left[\sin^{-1}\frac {x+1}{\sqrt{2x^2+2}}\right]$$
For convenience, let $\theta = \sin^{-1}\dfrac {x+1}{\sqrt{2x^2+2}}$. This means that
$\sin \theta = \dfrac {x+1}{\sqrt{2x^2+2}}$.
First keep in mind that the arcsin function takes numbers between $-1$ and $1$ and returns $\theta \in \left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]$.
It follows that $\cos(\theta) \in [0,1]$.
We find
\begin{align}
(x+1)^2 + (x-1)^2 &= 2x^2 + 2 \\
\dfrac{(x+1)^2}{2x^2 + 2} + \dfrac{(x-1)^2}{2x^2 + 2} &= 1 \\
\left(\dfrac{x+1}{\sqrt{2x^2 + 2}}\right)^2 +
\left(\dfrac{x-1}{\sqrt{2x^2 + 2}}\right)^2 &= 1 \\
\left(\dfrac{x-1}{\sqrt{2x^2 + 2}}\right)^2 &=
1-\left(\dfrac{x+1}{\sqrt{2x^2 + 2}}\right)^2 \\
\hline
\left(\cos\left[\sin^{-1}\frac {x+1}{\sqrt{2x^2+2}}\right]\right)^2
&= 1 - \left(\sin\left[\sin^{-1}\frac {x+1}{\sqrt{2x^2+2}}\right]\right)^2 \\
\cos^2(\theta) &= 1 - \sin^2(\theta) \\
\cos^2(\theta) &= \left(\dfrac{x-1}{\sqrt{2x^2 + 2}}\right)^2
\end{align}
Because $\cos(\theta)$ needs to be non negative, we conclude that
$$\cos(\theta) = \dfrac{|x-1|}{\sqrt{2x^2 + 2}}$$