In a post found here it is mentioned that a closed form for the so-called younger brother (younger in the sense the power in the denominator is only squared, rather than cubed as in the linked question) skew-harmonic sum $$S = \sum_{n = 1}^\infty \frac{H_n \overline{H}_n}{n^2}$$ can be found, though none is given. Here $H_n = \sum_{k = 1}^n \frac{1}{k}$ is the $n$th harmonic number while $\overline{H}_n = \sum_{k = 1}^n \frac{(-1)^{k + 1}}{k}$ is the $n$th skew-harmonic number.
I seek the closed-form expression for the sum $S$.
My thoughts on a possible alternative approach to that suggested in the link is as follows. Since $$\ln 2 - \overline{H}_n = (-1)^n \int_0^1 \frac{x^n}{1 + x} \, dx,$$ then $$H_n \overline{H}_n = \ln 2 H_n -(-1)^n H_n \int_0^1 \frac{x^n}{1 + x} \, dx.$$ Thus \begin{align} S &= \ln 2 \sum_{n = 1}^\infty \frac{H_n}{n^2} - \int_0^1 \frac{1}{1 + x} \sum_{n = 1}^\infty \frac{(-1)^n H_n x^n}{n^2} \, dx\\ &= 2 \ln 2 \zeta (3) - \int_0^1 \frac{1}{1 + x} \sum_{n = 1}^\infty \frac{H_n (-x)^n}{n^2} \, dx, \end{align} since $\sum_{n = 1}^\infty \frac{H_n}{n^2} = 2 \zeta (3)$.
I then thought of perhaps using the following known generating function of $$\sum_{n = 1}^\infty \frac{H_n}{n^2} x^n = \operatorname{Li}_3 (x) - \operatorname{Li}_3 (1-x) + \ln (1 - x) \operatorname{Li}_2 (1 - x) + \frac{1}{2} \ln x \ln^2 (1 - x) + \zeta (3),$$ but this leads to complex valued logs and polylogs which I would rather avoid.
Continuing
Continuing on using the generating function, we see that \begin{align} S &= 2 \ln 2 \zeta (3) - \int_0^1 \frac{\operatorname{Li}_3 (-x)}{1 + x} \, dx + \int_0^1 \frac{\operatorname{Li}_3 (1 + x)}{1 + x} \, dx\\ & \qquad - \int_0^1 \frac{\ln (1 + x) \operatorname{Li}_2 (1 + x)}{1 + x} \, dx - \frac{1}{2} \int_0^1 \frac{\ln (-x) \ln^2 (1 + x)}{1 + x} \, dx - \zeta (3) \int_0^1 \frac{dx}{1 + x}. \end{align} Surprisingly, indefinite integrals for all integrals appearing above can be readily found. Here: \begin{align} \int_0^1 \frac{\operatorname{Li}_3(-x)}{1 + x} \, dx &= \frac{1}{2} \operatorname{Li}^2_2 (-x) + \operatorname{Li}_3 (-x) \ln (1 + x) \Big{|}_0^1 = \frac{5}{16} \zeta (4) - \frac{3}{4} \ln 2 \zeta (3)\\[2ex] \int_0^1 \frac{\operatorname{Li}_3 (1 + x)}{1 + x} \, dx &= \operatorname{Li}_4 (1 + x) \Big{|}_0^1 = \operatorname{Li}_4 (2) - \zeta (4)\\ \int_0^1 \frac{\ln (1 + x) \operatorname{Li}_2 (1 + x)}{1 + x} \, dx &= \operatorname{Li}_3 (1 + x) \ln (1 + x) - \operatorname{Li}_4 (1 + x) \Big{|}_0^1\\ &= \operatorname{Li}_3 (2) \ln 2 - \operatorname{Li}_4 (2) + \zeta (4)\\[2ex] \int_0^1 \frac{\ln (-x) \ln^2 (1 + x)}{1 + x} \, dx &= -2 \operatorname{Li}_2 (1 + x) - \operatorname{Li}_2 (1 + x) \ln^2 (1 + x)\\ & \qquad + 2 \operatorname{Li}_3 (1 + x) \ln (1 + x) \Big{|}_0^1\\ &= -2 \operatorname{Li}_4 (2) - \operatorname{Li}_2 (2) \ln^2 2 + 2 \operatorname{Li}_3 (2) \ln 2 + 2 \zeta (4)\\ \int_0^1 \frac{dx}{1 + x} &= \ln 2 \end{align} Thus $$S = \frac{7}{4} \ln 2 \zeta (3) - \frac{53}{16} \zeta (4) + 3 \operatorname{Li}_4 (2) - 2 \operatorname{Li}_3 (2) \ln 2 + \frac{1}{2} \operatorname{Li}_2 (2) \ln^2 2.$$ Now finding values for $\operatorname{Li}_n (2)$ when $n = 2, 3$, and $4$. In each case the principal value is found.
- $n = 2$ case
Using $$\operatorname{Li}_2 (z) + \operatorname{Li}_2 (1 - z) = \zeta (2) - \ln z \ln (1 - z),$$ setting $z = 2$ gives $$\operatorname{Li}_2 (2) = \frac{3}{2} \zeta (2) - i\pi \ln 2.$$
- $n = 3$ case
Using $$\operatorname{Li}_3 (z) = \operatorname{Li}_3 \left (\frac{1}{z} \right ) - \frac{1}{6} \ln^3 (-z) - \zeta (2) \ln (-z),$$ setting $z = 2$ gives $$\operatorname{Li}_3 (2) = \frac{21}{24} \zeta (3) + \frac{3}{2} \zeta (2) \ln 2 - \frac{i \pi}{2} \ln^2 2.$$
- $n = 4$ case
Finally, from the result given here one has $$\operatorname{Li}_4(2) = 2 \zeta (4) - \operatorname{Li}_4 \left (\frac{1}{2} \right ) - \frac{i \pi}{6} \ln^3 2 + \zeta (2) \ln^2 2 - \frac{1}{24} \ln^4 2.$$
Plugging in all the pieces, we finally arrive at $$\sum_{n = 1}^\infty \frac{H_n \overline{H}_n}{n^2} = \frac{43}{16} \zeta (4) - 3 \operatorname{Li}_4 \left (\frac{1}{2} \right ) - \frac{1}{8} \ln^4 2 + \frac{3}{4} \zeta (2) \ln^2 2.$$ Magical!!