Here's a completely elementary
proof of convergence.
I would split the sum
into two parts:
first, a small part where the terms
are large;
second,
a large part
where the terms are small.
Choose
$0 < a < 1$
and let
$s
=\sum_{k=1}^{n}\exp\left(-\frac{(k-1)k}{2n}\right)
=s_1+s_2
$
where
$s_1
=\sum_{k\le n^a}\exp\left(-\frac{(k-1)k}{2n}\right)
$
and
$s_2
=\sum_{k\gt n^a}\exp\left(-\frac{(k-1)k}{2n}\right)
$.
Since
$\frac{(k-1)k}{2n}
\gt 0$,
$s_1 < n^a
$.
If $k-1 \ge n^a$,
then
$\frac{(k-1)k}{2n}
\ge \frac1{2}n^{2a-1}
$
so
$s_2
\le (n-n^a)e^{-\frac1{2}n^{2a-1}}
\lt ne^{-\frac1{2}n^{2a-1}}
$.
Choose
$2a > 1$,
or $a = \frac12(1+c)$
where
$1 > c > 0$.
Then
$s_2
\lt ne^{-n^c/2}
$.
A value which works is
$a = \frac23$
so that
$c = 2a-1 = \frac13
$.
Then
$s \lt n^a+ne^{-n^c/2}
$
so
$\dfrac{s}{n}
\lt n^{a-1}+e^{-n^c/2}
= n^{(c-1)/2}+e^{-n^c/2}
\to 0
$.