I am studying the following calculation: \begin{align} \int d^3\mathbf{x}\frac{1}{|{\mathbf{x}}|}e^{-i\mathbf{q}\cdot\mathbf{x}} & = \frac{-1}{|\mathbf{q}|^2}\int d^3\mathbf{x}\frac{1}{|\mathbf{x}|}\nabla^2\left(e^{-i\mathbf{q}\cdot\mathbf{x}}\right)= \\ &= \frac{-1}{|\mathbf{q}|^2}\int d^3\mathbf{x}\left(\nabla^2\frac{1}{|\mathbf{x}|}\right)e^{-i\mathbf{q}\cdot\mathbf{x}}\\ &=\frac{-1}{|\mathbf{q}|^2}\int d^3\mathbf{x}\left(-4\pi\delta^3(\mathbf{x})\right)e^{-i\mathbf{q}\cdot\mathbf{x}} = \\ &= \frac{4\pi}{|\mathbf{q}|^2} \end{align} I don't understand the following two equalities by what they are justified, there is some intermediate step? $$\frac{1}{|\mathbf{x}|}\nabla^2\left(e^{-i\mathbf{q}\cdot\mathbf{x}}\right)=\left(\nabla^2\frac{1}{|\mathbf{x}|}\right)e^{-i\mathbf{q}\cdot\mathbf{x}}$$ $$\left(\nabla^2\frac{1}{|\mathbf{x}|}\right)e^{-i\mathbf{q}\cdot\mathbf{x}}=(-4\pi\delta^3(\mathbf{x}))e^{-i\mathbf{q}\cdot\mathbf{x}}$$
Asked
Active
Viewed 153 times
0
-
1By "\abs{$\cdot$}", do you mean "$|\cdot |$"? – MPW Jan 10 '20 at 21:14