Let $p$ be an odd prime. Prove that $$1^i + 2^i + \cdots + (p-1)^i \equiv 0 \pmod{p}$$ for all $i$, $1 \le i \le (p-2)$.
If $i$ is odd, then we are done, since $j^i + (p-j)^i \equiv 0 \pmod{p}$ for every $j$. But how can we prove this if $i$ is even? Any ideas? Thanks for your help.