1

Let $p$ be an odd prime. Prove that $$1^i + 2^i + \cdots + (p-1)^i \equiv 0 \pmod{p}$$ for all $i$, $1 \le i \le (p-2)$.

If $i$ is odd, then we are done, since $j^i + (p-j)^i \equiv 0 \pmod{p}$ for every $j$. But how can we prove this if $i$ is even? Any ideas? Thanks for your help.

ViHdzP
  • 4,582
  • 2
  • 18
  • 44
Vann
  • 627

1 Answers1

1

Take $\xi$ a Primitive Root $\text{mod }p$. In particular, $\xi^i\not\equiv1\pmod{p}$. Therefore, $$1^i+2^i+\ldots+(p-1)^i\equiv\xi^0+\xi^i+\xi^{2i}+\ldots+\xi^{(p-2)i}\equiv\left(\xi^{(p-1)i}-1\right)\left(\xi^i-1\right)^{-1}\equiv0\pmod{p}.$$ $\blacksquare$

Vann
  • 627
ViHdzP
  • 4,582
  • 2
  • 18
  • 44