3

I need to prove this.

Let $p> 2$ be an odd prime and let $n$ be a positive integer. Prove that

$p$ divides $\sum\limits_{k=1}^{p-1} (k^p)^n $

Hint: Be $k=p^n$ and evaluate $d^k+(p-d)^k$ use the binomial theorem.

Thanks you for help me!

rtybase
  • 16,907
BpZ
  • 191

2 Answers2

1

It’s not true, as you see from the example $p=3$, $n=2$. In general, if $n$ is a multiple of $p-1$, you’re taking (modulo $p$) the sum of $1$ just $p-1$ times, giving a sum that’s $\equiv-1\pmod p$.

Lubin
  • 62,818
0

Because $\gcd(p,k)=1, \forall k=\overline{1,p-1}$, from Fermat's little theorem $$k^p\equiv k \pmod{p} \Rightarrow (k^p)^n\equiv k^n \pmod{p}$$ then $$\sum_{k=1}^{p-1}(k^p)^n\equiv \sum_{k=1}^{p-1}k^n \pmod{p}$$ As Lubin showed, the statement isn't always true. However, it works for $n=1$ because $$\sum_{k=1}^{p-1}k=\frac{p(p-1)}{2} \equiv 0 \pmod{p}$$ It works for $n=3$, because $$\sum_{k=1}^{p-1}k^3=\left(\frac{p(p-1)}{2}\right)^2 \equiv 0 \pmod{p}$$ And generally, for any $n=2q+1$, i.e. odd, because, due to binomial expantion $$\sum_{k=1}^{p-1}k^{2q+1}=(1+(p-1)^{2q+1}) + (2^{2q+1}+(p-2)^{2q+1})+ (3^{2q+1}+(p-3)^{2q+1})+...+\left(\left(\frac{p-1}{2}\right)^{2q+1}+\left(p-\frac{p-1}{2}\right)^{2q+1}\right) \equiv 0 \pmod{p}$$

rtybase
  • 16,907