Is this solution correct?
I've seen this solution before, but I don't know why it is so. And which rule?
The task is to find: $\omega=\displaystyle\lim_{n\to +\infty}\left(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right)$
I know that this $\lim$ equals $\frac{1}{e},$ but do you see if this solution is correct or not?
Solution is :
$\displaystyle\lim_{n\to +\infty}\left(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!}\right)=\displaystyle\lim_{n\to +\infty}\left((n+1)\sqrt[n+1]{\frac{(n+1)!}{(n+1)^{n+1}}}-n\sqrt[n]{\frac{n!}{n^{n}}}\right)$
$=\displaystyle\lim_{n\to +\infty}\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}$
$=\frac{1}{e}$
Notes & suggestions of mine:
I think he uses Stolz-Cesaro theorem:
See that
$\displaystyle\lim_{n\to +\infty}\frac{a_{n}}{b_{n}}=\displaystyle\lim_{n\to +\infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$
Chosen $a_{n}=n\sqrt[n]{\frac{n!}{n^n}}$
and $b_{n}=n$ clearly $b_{n}$ goes to $+\infty$ and $a_{n}$ goes to $+\infty$ because $n.\frac{1}{e}=+\infty$
we obtain:
$\omega=\displaystyle\lim_{n\to +\infty}\frac{n\sqrt[n]{n!}}{n}$
Then use Cauchy-d'Alembert
$=\displaystyle\lim_{n\to +\infty}\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\frac{1}{e}$
Is my explanation O.K.? May I ask for a correction?
Any remark ?