let $x_{k}>0(k=1,2,3,\cdots,n)$ show that $$\left(\sum_{k=1}^{n}x_{k}\tan{k}\right)\left(\sum_{k=1}^{n}x_{k}\cot{k}\right)\le n^3\sum_{k=1}^{n}x^2_{k}$$
My try use AM-GM and Cauchy-Schwarz inequality we have $$LHS\le \dfrac{(\sum_{k=1}^{n}(\tan{k}+\cot{k})x_{k})^2}{4}\le\dfrac{\sum_{k=1}^{n}x^2_{k}\sum_{k=1}^{n}(\tan{k}+\cot{k})^2}{4}=\dfrac{2n+\sum_{k=1}^{n}(\cot^2{k}+\tan^2{k})}{4}\sum_{k=1}^{n}x^2_{k}$$