As explained here, we solve a modular quadratic via CRT as in the Remark below, here using also that a prime power $\,p^n\mid x(x\!-\!1)\iff p^n\mid x\ $ or $\ p^n\mid x\!-\!1,\,$ by $\,x,\,x\!-\!1\,$ coprime, which yields
$$x(x\!-\!1)\equiv 0\!\!\!\pmod{\!8\cdot 125}\iff \begin{align} &x\equiv 0,1\!\!\!\pmod{\!8}\\ &x\equiv 0,1\!\!\!\pmod{\!125}\end{align}\qquad\qquad $$
By the Remark they combine to $\,4\,$ roots $\,x\equiv (\color{#90f}{{0,0}}),\,(\color{#0a0}{1,1}),\,(0,1),\,(1,0)\,$ mod $(8,125).\,$ By CCRT the first two lift to $\,x\equiv \color{#90f}{0},\,\color{#0a0}{1} \pmod{\!1000},\,$ the third root $\,(0,1)\bmod (8,125)$ lifts by CRT as
$\!\bmod\, \color{#c00}{8}\!:\:\ 0 \equiv\, x \equiv 1+125\,\color{#c00}k \equiv 1-3k \iff 3k\equiv1\equiv9 \iff \color{#c00}{k \equiv 3}$
hence we infer $\ x = 1+125(\color{#c00}{3+8}n) = 376+1000n,\ $ so $\ (0,1)\,\mapsto 376.\,$ Like in Vieta, the final $4\rm'th$ root $\,(1,0)\,$ is easy using $\, (1,0) + \smash[b]{\underbrace{(0,1)^{\phantom{|^{|^|}}}\!\!\!\!}_{\large 376}}\equiv \smash[b]{\underbrace{(1,1)}_{\large 1}}_{\phantom{._{|_{|_{|_|}}}}}\!\!\!\!\!$ $\Rightarrow (1,0)\,\mapsto\, 1\!-\!376\equiv 625$
Remark $ $ For more complex examples it is usually easier to solve the CRT system first for generic (symbolic) roots, then plug in the specific root values for all combinations, e.g. see here and here.
If $\,m,n\,$ are coprime then, by CRT, solving a polynomial $\,f(x)\equiv 0\pmod{\!mn}\,$ is equivalent to solving $\,f(x)\equiv 0\,$ mod $\,m\,$ and mod $\,n.\,$ By CRT, each combination of a root $\,r_i\bmod m\,$ and a root $\,s_j\bmod n\,$ corresponds to a unique root $\,t_{ij}\bmod mn,\,$ i.e.
$$\begin{eqnarray} f(x)\equiv 0\!\!\!\pmod{\!mn}&\overset{\,\,\rm CRT}\iff& \begin{array}{}f(x)\equiv 0\pmod{\! m}\\f(x)\equiv 0\pmod{\! n}\end{array} \\
&\,\,\iff& \begin{array}{}x\equiv r_1,\ldots,r_k\pmod{\! m}\phantom{I^{I^{I^I}}}\\x\equiv s_1,\ldots,s_\ell\pmod{\! n}\end{array}\\
&\,\,\iff& \left\{ \begin{array}{}x\equiv r_i\pmod{\! m}\\x\equiv s_j\pmod {\! n}\end{array} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}^{\phantom{I^{I^{I^I}}}}\\
&\overset{\,\,\rm CRT}\iff& \left\{ x\equiv t_{i j}\!\!\pmod{\!mn} \right\}_{\begin{array}{}1\le i\le k\\ 1\le j\le\ell\end{array}}\\
\end{eqnarray}\qquad\qquad$$