I need help in solving equation: $\sin(2x)\cdot(\sin(x)+\cos(x))=\sqrt2$ I tried to
-
2You tried what? – Maximilian Janisch Dec 13 '19 at 15:43
-
1At a first sight, $x=\pi/4$ is a solution. – Jon Dec 13 '19 at 15:47
-
If you are able to find what is maximum of $\cos x+\sin x$, that might help you. – Martin Sleziak Dec 13 '19 at 17:52
5 Answers
Hint:
We get $$\sqrt2=\sqrt2\sin(x+\pi/4)\sin2x$$
$$\implies\sin2x=\sin(x+\pi/4)=\pm1$$(why?)

- 274,582
Write your equation in the form $$\frac{1}{2} \left(-\sqrt{2} \sin \left(\frac{\pi }{4}-3 x\right)+\sqrt{2} \sin \left(x+\frac{\pi }{4}\right)-2 \sqrt{2}\right)=0$$ after this use $$\sin(x)-\sin(y)=2 \sin \left(\frac{x}{2}-\frac{y}{2}\right) \cos \left(\frac{x}{2}+\frac{y}{2}\right)$$

- 95,283
Taking square both sides, we have
$$\sin^22x(\cos^2x+\sin^2x+2\sin x \cos x )=\sin^22x(1+2\sin x \cos x )$$
$$\sin^2 2x(1+\sin2x)=2$$
Let $\sin2x=t$, where $-1\le t \le 1$.
$$t^3+t=2$$
$$(t-1)(t^2+t+2)=0$$
Since $t^2+t+2>0$ for all $t\in [-1,1]$, $t$ must be 1.
$$\sin2x=1$$
implies $\displaystyle2x=n\pi +(-1)^n\frac{\pi}{2}$ where $n\in \mathbb{Z}.$
Therefore, $$x=\frac{n\pi}{2} +(-1)^n\frac{\pi}{4} $$
where $n\in \mathbb{Z}.$

- 310
With $x=t+\dfrac\pi 4$,
$$-\cos(2t)\frac1{\sqrt2}(\sin t+\cos t+\cos t-\sin t)=\sqrt 2$$
or
$$\cos(2t)\cos t=-1.$$
The only possibility is $\cos t=-1$, $t=(2k+1)\pi$, i.e. $$x=(2k+1)\pi-\dfrac\pi4.$$
Avoid squaring as it immediately introduces When do we get extraneous roots?
Set $\sqrt2y=\sin x+\cos x,2y^2=?$
So, we have $$\sqrt2y(2y^2-1)=\sqrt2$$
By observation or using Rational root theorem,
one of real roots of the last equation is $1$
The rest two roots are imaginary

- 274,582