Finding sum of series $\displaystyle \sum^{\infty}_{k=0}\frac{(k+1)(k+2)}{2^k}$
what i try
Let $\displaystyle x=\frac{1}{2},$ Then series sum is $\displaystyle \sum^{\infty}_{k=0}(k+1)(k+2)x^k$
$\displaystyle \sum^{\infty}_{k=0}x^k=\frac{1}{1-x}\Rightarrow \sum^{\infty}_{k=0}x^{k+1}=\frac{x}{1-x}=\frac{1-(1-x)}{1-x}$
differentiating both side
$\displaystyle \sum^{\infty}_{k=0}(k+1)x^{k}=+\frac{1}{(1-x)^2}$
How do i solve it help me please