Derivative of $y=\sin^{-1}\bigg[\sqrt{x-ax}-\sqrt{a-ax}\bigg]$
Put $\sqrt{x}=\sin\alpha,\;\sqrt{a}=\sin\beta$ $$ y=\sin^{-1}\bigg[\sqrt{x-ax}-\sqrt{a-ax}\bigg]=\sin^{-1}\bigg[\sqrt{x(1-a)}-\sqrt{a(1-x)}\bigg]\\ =\sin^{-1}\bigg[\sin\alpha|\cos\beta|-|\cos\alpha|\sin\beta\bigg] $$
My reference gives the solution $\dfrac{1}{2\sqrt{x}\sqrt{1-x}}$, but is it a complete solution ?
How do I proceed further with my attempt ?