Let $a$ be a real number in the interval $[0,314]$ such that
$$\displaystyle \int^{3\pi+a}_{\pi+a}|x-a-\pi|\sin \frac{x}{2}dx=-16.$$
Determine the number of such real values of $a.$
What I tried:
Put $x-a-\pi=t$. Then,
$$\displaystyle \int^{2\pi}_{0}|t|\sin \bigg(\frac{t+a+\pi}{2}\bigg)dx=-16$$
$$\int^{2\pi}_{0}t\cos\bigg(\frac{t+a}{2}\bigg)dt=-16$$
$$2t\sin \frac{t+a}{2}\bigg|^{2\pi}_{0}+4\int^{2\pi}_{0}\cos\frac{a+t}{2}dt=-16$$
$$-2\pi\sin \frac{a}{2}+4\int^{2\pi}_{0}\cos\frac{a+t}{2}dt=-16.$$
How do I solve this?