Here is a „brute-force approach“ (assume WLOG $K=1$.)
Even with your parametrization the calculations are doable:
Note that $$r'(t)=\left(-\frac{2 \sin (t)+\cos (t)}{(\sin (2 t)+2)^{3/2}},\frac{\sin (t)+2 \cos (t)}{(\sin (2 t)+2)^{3/2}},\frac{\sin (t)-\cos (t)}{(\sin (2 t)+2)^{3/2}}\right)$$
so that $$\|r'(t)\|_2=\sqrt{\frac{(\sin (t)-\cos (t))^2}{(\sin (2 t)+2)^3}+\frac{(\sin (t)+2 \cos (t))^2}{(\sin (2 t)+2)^3}+\frac{(2 \sin (t)+\cos (t))^2}{(\sin (2 t)+2)^3}}$$
which reduces to $$\|r'(t)\|_2=\sqrt{\frac{6+6\sin(t)\cos(t)}{(2+\sin(2t))^3}}=\sqrt{3} \sqrt{\frac{1}{(\sin (2 t)+2)^2}}.$$
So $$I=\int_0^{2\pi} \frac{\sqrt{3} \sin ^2(t)}{(\sin (2 t)+2)^2}\,\mathrm dt=2\sqrt{3}\int_0^{\pi} \frac{\sin ^2(t)}{(\sin (2 t)+2)^2}\,\mathrm dt.$$
It remains to calculate the last integral, which I will call $J$. $J$ is a standard integral and we may proceed as follows: $$J=\int_0^\pi \frac{\sin^2(t)}{(2\sin(t)\cos(t)+1)^2}\,\mathrm dt\overset{(1)}=\int_0^\pi \frac{\csc^2(t)}{4\cot^2(t)+4\csc^4(t)+8\cot(t)\csc^2(t)}\,\mathrm dt\overset{(2)}=\int_{-\infty}^\infty\frac{1}{4(u^2+u+1)^2}\,\mathrm du.$$
(1): Expand the fraction by $\csc^4$
(2): Use that $\csc^2=\cot^2+1$ and substitute $u=\cot(t)$.
So, by substituting $s=u+\frac12$, $$J=\frac14\int_{-\infty}^\infty \frac{1}{(s^2+\frac34)^2}\,\mathrm ds=\frac{4}9\int_{-\infty}^\infty \frac{1}{(\frac43 s^2+1)^2}\,\mathrm ds.$$
The last integral can be evaluated as here.
The final result should be $J=\frac{\pi}{3\sqrt 3}$ so that $$\bbox[5px,border:2px solid #C0A000]{I=\frac{2\pi}3.}$$