This is exercise $II.10.$ of Kunen's set theory:
Show (in ZFC) that there exist almost disjoint families $\mathcal A,\mathcal B\subseteq P(\omega)$ such that $|\mathcal A|=|\mathcal B-\mathcal A|=\omega_1$ and there is no $d\subseteq \omega$ such that $\forall x\in\mathcal A(|d\cap x|<\omega$) and $\forall x\in \mathcal B-\mathcal A(|x-d|=\omega)$.
Kunen hints:
$\mathcal A=\{a_{\alpha}:\alpha<\omega_1\}$, and $\mathcal B-\mathcal A=\{b_{\alpha}:\alpha<\omega_1\}$. Construct $a_{\alpha}$,$b_{\alpha}$ inductively so that $a_{\alpha}\cap b_{\alpha}=\emptyset$ but $\alpha\neq \beta \rightarrow a_{\alpha}\cap b_{\beta}\neq\emptyset$.
But I have no idea on how to show the hint. All ideas are appreciated.
Thanks