I'm trying to prove that,
$$f(x)=\sinh x=\frac{e^{x}-e^{-x}}{2} \implies \frac{df}{dx}=\cosh x=\frac{e^{x}+e^{-x}}{2}$$
using the definition of derivative.
\begin{align}f(x)=\sinh x =\frac{e^{x}-e^{-x}}{2} &\frac{df}{dx}=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &=\lim_{h\to 0}\frac{\frac{e^{x+h}-e^{-(x+h)}}{2}-\frac{e^{x}-e^{-x}}{2}}{h} \\ &=\lim_{h\to 0}\frac{e^{x+h}-e^{-x-h}-e^{x}+e^{-x}}{2h} \\ &=\lim_{h\to 0}\frac{e^{x}e^{h}-e^{-x}e^{-h}-e^{x}+e^{-x}}{2h} \\ &=\lim_{h\to 0}\frac{e^{x}(e^{h}-1)+e^{-x}(-e^{-h}+1)}{2h} \\ \end{align}
And I can't go anymore from here. How can I prove it?