0

I'm trying to prove that,

$$f(x)=\sinh x=\frac{e^{x}-e^{-x}}{2} \implies \frac{df}{dx}=\cosh x=\frac{e^{x}+e^{-x}}{2}$$

using the definition of derivative.

\begin{align}f(x)=\sinh x =\frac{e^{x}-e^{-x}}{2} &\frac{df}{dx}=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &=\lim_{h\to 0}\frac{\frac{e^{x+h}-e^{-(x+h)}}{2}-\frac{e^{x}-e^{-x}}{2}}{h} \\ &=\lim_{h\to 0}\frac{e^{x+h}-e^{-x-h}-e^{x}+e^{-x}}{2h} \\ &=\lim_{h\to 0}\frac{e^{x}e^{h}-e^{-x}e^{-h}-e^{x}+e^{-x}}{2h} \\ &=\lim_{h\to 0}\frac{e^{x}(e^{h}-1)+e^{-x}(-e^{-h}+1)}{2h} \\ \end{align}

And I can't go anymore from here. How can I prove it?

1 Answers1

2

Now use the fact that$$\lim_{h\to0}\frac{e^h-1}h=1\text{ and }\lim_{h\to0}\frac{e^{-h}-1}h=-1,$$both of which follow from the fact that $\exp'(0)=1$.