Here is an attempt
to use only integers.
To show
$\lim_{x \to 0} \dfrac{e^x-1}{x}
= 0
$
using
$e
= \lim_{n \to \infty} \left(1+\frac1{n}\right)^n
$.
From this,
$e^x
= \lim_{n \to \infty} \left(1+\frac1{n}\right)^{nx}
$.
This is a double limit,
which is often problematical.
For general $x$,
this seems to require the
generalized binomial theorem.
To avoid this,
I will assume
$x = \frac1{m}$
as integer
$m \to \infty$,
and let
$n=km$
as integer $k \to \infty$.
Then
$e^{1/m}
= \lim_{k \to \infty} \left(1+\frac1{mk}\right)^{k}
$.
Now we can use the binomial theorem.
$\begin{array}\\
\left(1+\frac1{mk}\right)^{k}
&=\sum_{j=0}^k \binom{k}{j}\frac1{(mk)^j}\\
&=\sum_{j=0}^k \frac{\prod_{i=0}^{j-1}(k-i)}{j!}\frac1{(mk)^j}\\
\text{so}\\
f(m, k)
&=\dfrac{\left(1+\frac1{mk}\right)^{k}-1}{1/m}\\
&=m\sum_{j=1}^k \frac{\prod_{i=0}^{j-1}(k-i)}{j!}\frac1{(mk)^j}\\
&\le m\sum_{j=1}^k \frac{1}{j!}\frac1{m^j}\\
&= \sum_{j=1}^k \frac{1}{j!}\frac1{m^{j-1}}\\
&=1+ \sum_{j=2}^k \frac{1}{j!}\frac1{m^{j-1}}\\
&\le 1+ \frac1{m}\sum_{j=2}^k \frac{1}{j!}\frac1{m^{j-2}}\\
&= 1+ \frac1{m}\sum_{j=0}^{k-2} \frac{1}{(j+2)!}\frac1{m^j}\\
\end{array}
$
Since
$\sum_{j=0}^{k-2} \frac{1}{(j+2)!}\frac1{m^j}$
is easily shown
to be bounded by
$1$
(actually,
by $\sum_{j=0}^{k-2} \frac{1}{(j+2)!} = e-2$),
$f(m, k)
\le 1+\frac1{m}$.
Since
$f(m, k)
\ge 1$
(from its first term),
$\lim_{m \to \infty} f(m, k)
= 1$.