$x\in \mathbb R\;\;$ such that $\;\;x+\frac{1}{x} \in \mathbb Z.$
Prove by induction: $$x+\frac{1}{x} \in \mathbb Z\implies x^n+\frac{1}{x^n} \in \mathbb Z, \;\;\;\forall n\in \mathbb N$$
I used the $complete/strong$ induction.
The base $n=1$ is already in the statement.
Assumption: Let $P(n)\ldots,\;x^n+\frac{1}{x^n} \in \mathbb Z$ be true, as well as $$P(1), P(2),...P(n-2),P(n-1).$$ Step:$\;P(n+1)$ is true.
$x+\frac{1}{x} \in \mathbb Z\;\wedge x^n+\frac{1}{x^n} \in \mathbb Z\implies \Big(x+\frac{1}{x}\Big)\Big(x^n+\frac{1}{x^n}\Big)\in \mathbb Z$
$x^{n+1}+\frac{1}{x^{n-1}}+x^{n-1}+\frac{1}{x^{n+1}}=\underbrace{\Big(x^{n-1}+\frac{1}{x^{n-1}}\Big)}_{\in\mathbb Z}+\Big(x^{n+1}+\frac{1}{x^{n+1}}\Big)$
$x^{n+1}+\frac{1}{x^{n+1}}=\Big(x+\frac{1}{x}\Big)\Big(x^n+\frac{1}{x^n}\Big)-{\Big(x^{n-1}+\frac{1}{x^{n-1}}\Big)}\in\mathbb Z$