Show that $z^n + \dfrac{1}{z^n} ∈ \mathbb{Q}$, when $z + \dfrac{1}{z} = 3$
If it helps, for $n\in\big\{2,3,4,5\big\}$, $\;z^n + \dfrac{1}{z^n} = 7, 18, 47, 123.$
Show that $z^n + \dfrac{1}{z^n} ∈ \mathbb{Q}$, when $z + \dfrac{1}{z} = 3$
If it helps, for $n\in\big\{2,3,4,5\big\}$, $\;z^n + \dfrac{1}{z^n} = 7, 18, 47, 123.$
Hint. Let's call $a_n = z^n +\frac{1}{z^n}$. Can you find $a_{n+1}$ from $a_1 \cdot a_n$ ?