Approach 1: Series expansion
Having studied approach 2 in more detail I found that it corresponds just to a direct series expansion of the integrand of the integral.
Using
$$\frac{\log(1+x)}{1+x} = \sum _{i=1}^{\infty } (-1)^{i+1} H_i x^i$$
where
$$H_i = \sum _{n=1}^i \frac{1}{n}$$
is the harmonic number, and
$$\log \left(1+\frac{x}{2}\right)=\sum _{j=1}^{\infty } \frac{(-1)^{j+1} 2^{-j} x^j}{j}$$
and
$$\log \left(1+\frac{x}{3}\right)= \sum _{k=1}^{\infty } \frac{(-1)^{k+1} 3^{-k} x^k}{k}$$
we can write the integrand of $i_{1s}$ as
$$\frac{\log(1+x)\log(1+\frac{x}{2})\log(1+\frac{x}{3})}{1+x}=\sum_{m=1}^{\infty} (-1)^{m+1} c(m) x^m$$
where the coefficients are defined as
$$c(m)=\sum _{i=1}^{\infty} \sum _{j=1}^{\infty} \sum _{k=1}^{\infty} \frac{ H_i}{ 2^{j}\;j\;3^{k}\; k} \delta _{m,i+j+k}$$
Here $\delta _{n,m}$ is Kronecker's delta ($=1$ if $n=m$, $= 0$ else).
Notice that the triple sum consists effectively only of $\left\lceil \frac{1}{2} (m-3) \left(m+\frac{1}{2}-3\right)\right\rceil$ summands.
Writing $c(m) = p(m)/q(m)$ as an irreducible fraction we have for the first few terms
$$\{p\}_{m=1}^{m=10}=\{0,0,0,1,23,283,2725,46261,1821713,4554217\}$$
$$\{q\}_{m=1}^{m=10} = \{1,1,1,6,72,648,5184,77760,2799360,6531840\}$$
none of which is contained in https://oeis.org/.
The integral itself is then given by
$$i_{1s} = \sum_{m=1}^{\infty} \frac{c(m)}{m+1}$$
The coefficients look suffciently complicated so that a closed expression seems to be out of reach.
However, still complicated looking cases do have closed expressions, as for instance
$$\int_0^1 \frac{\log (x+1) \log \left(\frac{x}{2}+1\right)}{x+1} \, dx=\operatorname{Li}_3(-2)-\operatorname{Li}_2(-2) \log (2)+\frac{3 \zeta (3)}{4}-\frac{1}{2} \log ^3(2)$$
Hence we don't give up but consider this sequence of integrals
$$i(k) = (-1)^{k+1} \int_0^1 \frac{x^k \log (x+1) \log \left(\frac{x}{2}+1\right)}{x+1} \, dx$$
from which we find the integral by forming the series of $\log(1+x/3)$ thus
$$i_{1s} = \sum_{k=1}^{\infty} \frac{ i(k)}{k \;3^k}$$
We have
$$i(1) = -\operatorname{Li}_2\left(-\frac{1}{2}\right)-\operatorname{Li}_3\left(-\frac{1}{2}\right)-\operatorname{Li}_2\left(-\frac{1}{2}\right) \log (2)-\frac{3 \zeta (3)}{4}-\frac{\pi ^2}{12}+2+\frac{1}{6}\log ^3(2)\\-\frac{5 \log ^2(2)}{2}+3 \log (3) \log (2)-\log \left(\frac{27}{2}\right)$$
$$i(2) = -\frac{5 \operatorname{Li}_2\left(-\frac{1}{2}\right)}{2}-\operatorname{Li}_3\left(-\frac{1}{2}\right)-\operatorname{Li}_2\left(-\frac{1}{2}\right) \log (2)-\frac{3 \zeta (3)}{4}-\frac{5 \pi ^2}{24}+4+\frac{1}{6} \log ^3(2)\\-\frac{5 \log ^2(2)}{4}+\frac{9}{2} \log (3) \log (2)+\frac{5 \log (2)}{4}-\frac{21 \log (3)}{4}-\frac{1}{12} \log (8) \log (256)$$
$$i(3) = -\frac{29 \operatorname{Li}_2\left(-\frac{1}{2}\right)}{6}-\operatorname{Li}_3\left(-\frac{1}{2}\right)-\operatorname{Li}_2\left(-\frac{1}{2}\right) \log (2)-\frac{3 \zeta (3)}{4}-\frac{29 \pi ^2}{72}+\frac{707}{108}+\frac{1}{6}\log ^3(2)\\-\frac{61 \log ^2(2)}{12}+\frac{15}{2} \log (3) \log (2)+\frac{31 \log (2)}{36}-\frac{31 \log (3)}{4}$$
$$i(4) =-\frac{103 \operatorname{Li}_2\left(-\frac{1}{2}\right)}{12}-\operatorname{Li}_3\left(-\frac{1}{2}\right)-\operatorname{Li}_2\left(-\frac{1}{2}\right) \log (2)-\frac{3 \zeta (3)}{4}-\frac{103 \pi ^2}{144}+\frac{2179}{216}-\frac{1}{6} \log ^3(2)\\-\frac{167 \log ^2(2)}{24}+\frac{45}{4} \log (3) \log (2)-\frac{95 \log (2)}{144}-\frac{169 \log (3)}{16}$$
It seems that the expressions have the form
$$i(k) = a_{1,k} + a_{2,k}\;\pi^2 + a_{3,k}\; \log (2)+ a_{4,k}\;\log ^2(2)+\\+ a_{5,k}\;\log (3)+ a_{6,k}\;\log (2)\log (3)+a_{7,k} \operatorname{Li}_2\left(-\frac{1}{2}\right)\\ + \left(\frac{1}{6} \log ^3(2)- \operatorname{Li}_3\left(-\frac{1}{2}\right)-\operatorname{Li}_2\left(-\frac{1}{2}\right) \log (2)-\frac{3 \zeta (3)}{4}\right)$$
where the $a_{i,k}$ are rational numbers.
Approach 2: Generating function (original post)
A few minutes after having posted the problem I took up a thread I had considered earlier, and it gives a formal solution in terms of derivatives of known (but not particularly common) functions.
The trick is to generate the $\log$ and the power by
$$\frac{\partial x^a}{\partial a}=x^a \log (x)$$
Consider the function
$$g(x,a,b,c) = (x+1)^a (x+2)^b (x+3)^c\tag{1}$$
from which we can generate the integrand
$$\frac{\log (x+1) \log (x+2) \log (x+3)}{x+1}\tag{2}$$
by a triple derivative and appropriate replacement of the parameters $a,b,c$ as follows
$$\frac{\partial ^3\left((x+1)^a (x+2)^b (x+3)^c\right)}{\partial a\, \partial b\, \partial c}\text{/.}\, \{a\to -1,b\to 0,c\to 0\}\tag{3}$$
Interchanging the order of operations and doing the $x$-integral first we get
$$G(a,b,c) = \int_{0}^{1} g(x,a,b,c)\,dx \\= \frac{2^c}{a+1} \left(2^{a+1} F_1(a+1;-b,-c;a+2;-2,-1)\\-F_1\left(a+1;-b,-c;a+2;-1,-\frac{1}{2}\right)\right)\tag{4}$$
Here
$$F_1(r;s,t;u;x,y)=\sum_{m,n=0}^{\infty} \frac{(r)_{m+n} (s)_{m} (t)_{n}}{(u)_{m+n}}\frac{x^m}{m!} \frac{y^n}{n!}\tag{5}$$
with the notation $(r)_n=\frac{\Gamma (n+r)}{\Gamma (r)}$ is the AppellF1 function which belongs to the class of the hypergeometric functions (http://mathworld.wolfram.com/AppellHypergeometricFunction.html).
The reference also provides an representation as a single integral
$$F_1(r;s,t;u;x,y)=\frac{\Gamma (u)}{\Gamma (r) \Gamma (u-r)} \int_0^1 z^{r-1} (1-z)^{-r+u-1} (1-x z)^{-s} (1-y z)^{-t} \, dz\tag{5a}$$
Hence we have the formal solution
$$i_{1}=\frac{\partial ^3 G(a,b,c)}{\partial a\, \partial b\, \partial c}\text{/.}\, \{a\to -1,b\to 0,c\to 0\}\tag{6}$$
The first steps in trying to evaluate $(6)$ do not support hope for a simple final expression. It seems that we will have replaced a nice integral by a more or less ugly double sum. But let's see ...