4

In my study (https://math.stackexchange.com/a/3392284/198592) of pdfs for the harmonic mean of $n$ independent random variables $x_{i} \sim U(0,1)$ I discovered the lemma

$$f_{2}(a) = \int_0^{\infty } e^{-a q} \Gamma (0,q)^2 \, dq = -\frac{1}{a}\left(2 \operatorname{Li}_2(-a-1)+\frac{\pi ^2}{6}\right)$$

Here $\Gamma(b,q) = \int_{q}^{\infty} t^{b-1}e^{-t}\,dt$ is the incomplete Gamma function and $\operatorname{Li}_n(x)=\sum _{k=1}^{\infty } \frac{x^k}{k^n}$ is the polylog function.

I have a nice proof of it, and I'd like to share with you the joy of finding it or preferrably another one.

  • Here's a really conspicuous example of why one writes things like \operatorname{Li} rather than \text{Li}. Notice the difference: $$\begin{align} & 2 \operatorname{Li}_2(-a-1) \ {} \ & 2 \text{Li}_2(-a-1) \end{align}$$ It's not just space to the left and right of $\operatorname{Li},$ but also the fact that with \operatorname{} the spacing depends on the context, whereas with \text{} it doesn't. – Michael Hardy Oct 23 '19 at 21:18
  • @Michael Hardy Thank you very much for this hint, It looks really better. – Dr. Wolfgang Hintze Oct 23 '19 at 22:16
  • Integrate by parts to replace $\Gamma(0,q)^2$ by $2q^{-1}e^{-q} \Gamma(0,q)$, expand $\Gamma(0,q)'-q^{-1}$ thus $\Gamma(0,q)-\log q$ in Laurent series, integrate each term. – reuns Oct 24 '19 at 05:35
  • very nice question... (+1) – Ali Shadhar Oct 24 '19 at 07:12
  • @ Ali Shather Thank you. Did you try a proof? – Dr. Wolfgang Hintze Oct 29 '19 at 19:54

2 Answers2

3

Derivation

We have to calculate the integral

$$f_{2}(a) =\int_0^{\infty } e^{-a q} \Gamma (0,q)^2 \, dq \tag{1}$$

with $a\ge0$. Here

$$\Gamma (0,q) = \int_{q}^{\infty} \frac{e^{-t}}{t}\,dt$$

is the incomplete Gamma function.

We start with partial integration writing

$$a e^{-a q} \Gamma (0,q)^2= -\frac{\partial \left(e^{-a q} \Gamma (0,q)^2\right)}{\partial q}-\frac{2 e^{-(a+1) q} \Gamma (0,q)}{q}\tag{2}$$

Here we have used

$$\frac{\partial \Gamma (0,q)^2}{\partial q}=-\frac{2 e^{-q} \Gamma (0,q)}{q}\tag{3}$$

Before we integrate $(2)$, in order to avoid the divergence at $q=0$, we differentiate $(2)$ with respect to $a$, leading to

$$e^{-a q} \Gamma (0,q)^2-a q e^{-a q} \Gamma (0,q)^2=2 e^{-(a+1) q} \Gamma (0,q)+\frac{\partial \left(q e^{-a q} \Gamma (0,q)^2\right)}{\partial q}\tag{4}$$

Now we integrate $(4)$ over $q$, which gives, identifying $f_{2}(a)$ and its derivative

$$f_{2}(a) +a \frac{\partial f_{2}(a)}{\partial a}=\frac{\log (a+2)}{a+1}\tag{5}$$

Here we have used that one integral can be done explicitly

$$\int_0^{\infty } 2 e^{-(a+1) q} \Gamma (0,q) \, dq=\frac{\log (a+2)}{a+1}\tag{6}$$

and that the integrated term

$$i = q e^{-a q} \Gamma (0,q)^2\tag{7}$$

vanishes at the boundaries $q\to0$ and $q\to\infty$. Notice that since $\Gamma (0,q)\sim \log(q)$ the factor $q$ is important for $i$ to vanish in the limit $q\to0$.

Hence with $(5)$ we have derived a ODE for the function to be found. It is a linear inhomogeneous ODE of first order.

The solution is found (with Mathematica) to be

$$f_{2}(a) = \frac{c}{a}-\frac{2 \operatorname{Li}_2(-a-1)}{a}$$

The constant of integration $c$ can be determined by the condition that $f_{2}(a) \lt \infty$ for $a\to 0$. A sufficient condition for this is that

$$c = 2 \operatorname{Li}_2(-1)= -\frac{\pi^2}{6}$$

This gives

$$f_{2}(a) =-\frac{1}{a}\left(2 \operatorname{Li}_2(-a-1)+\frac{\pi ^2}{6}\right)$$

Taking the limit $a\to 0$ gives

$$\lim_{a\to 0} \, f_{2}(a) = \log(4)$$

and this result can also be drived from $(1)$ with a simplified version of this derivation. This completes the derivation.

Extension

With the same method I have also calculated the integral with the third power of $\Gamma(0,q)$

$$f_{3}(a) =\int_0^{\infty } e^{-a q} \Gamma (0,q)^3 \, dq \tag{e1}$$

The ODE here is

$$f_{3}(a)+a \frac{\partial f_{3}(a)}{\partial a}=3 f_{2}(a+1)\tag{e2}$$

The initial value at $a=0$ is

$$f_{3}(a\to0) = \int_0^{\infty } \Gamma (0,q)^3 \, dq = \left(-6 \operatorname{Li}_2(-2)-\frac{\pi ^2}{2}\right)\tag{e3}$$

The lengthy result which I could not simplify further but which I checked numerically is

$$f_{3}(a) =\frac{-1}{a}\left(6 \operatorname{Li}_3(-a-2)-6 \operatorname{Li}_3(-a-1)+6 \operatorname{Li}_3\left(-\frac{2}{a+1}\right)+6 \operatorname{Li}_3\left(-\frac{a+3}{a+1}\right)+6 \operatorname{Li}_3\left(\frac{2}{a+3}\right)+6 \operatorname{Li}_3\left(\frac{a+2}{a+3}\right)+6 \operatorname{Li}_2(-a-2) \log (a+1)+6 \operatorname{Li}_2(-a-1) \log (a+1)-6 \operatorname{Li}_2(-a-2) \log (a+3)+6 \operatorname{Li}_2\left(-\frac{2}{a+1}\right) \log \left(\frac{a+1}{a+3}\right)+6 \operatorname{Li}_2\left(-\frac{a+3}{a+1}\right) \log \left(\frac{a+1}{a+3}\right)+4 \log ^3(a+1)-2 \log ^3(a+3)-3 \log (2) \log ^2(a+1)-9 \log (a+3) \log ^2(a+1)+6 \log ^2(a+3) \log (a+1)-3 \log (2) \log ^2(a+3)-3 \log (a+2) \log ^2(a+3)+\frac{1}{2} \pi ^2 \log (a+1)+6 \log (2) \log (a+3) \log (a+1)+6 \log (a+2) \log (a+3) \log (a+1)-6 \operatorname{Li}_3(-3)-12 \operatorname{Li}_3(-2)-12 \operatorname{Li}_3\left(\frac{2}{3}\right)+6 \operatorname{Li}_2(-3) \log (3)+12 \operatorname{Li}_2(-2) \log (3)-\frac{9 \zeta (3)}{2}+2 \log ^2(3) (3 \log (2)+\log (3))\right)\tag{e4}$$

In the limit $a\to 0$ we get

$$\lim_{a\to 0} \, f_{3}(a)=\int_0^{\infty }\Gamma (0,q)^3 \, dq\\=-5 \operatorname{Li}_2(-2)+\operatorname{Li}_2\left(\frac{2}{3}\right)-\frac{\pi ^2}{2}\\+\frac{\log ^2(3)}{2}-8 \log (2) \log (3)+4 \log (4) \log (3)\simeq 3.68568\tag{e5}$$

Comparing this with the much simpler expression $(e3)$ leaves some hope that the expression for $f_{3}(a)$ could be simplified appreciably.

The general case

Luckily, the general integral

$$f_{n}(a) =\int_0^{\infty } e^{-a q} \Gamma (0,q)^n \, dq $$

can be found for any $n=0,1,2,...$.

In fact, writing the integrand as

$$e^{-a q} \Gamma (0,q)^n=\frac{\partial \left(q e^{-a q} \Gamma (0,q)^n\right)}{\partial q}-q \frac{\partial \left(e^{-a q} \Gamma (0,q)^n\right)}{\partial q}$$

or, using

$$\frac{\partial \left(e^{-a q} \Gamma (0,q)^n\right)}{\partial q}=-\frac{n e^{-a q-q} \Gamma (0,q)^{n-1}}{q}-a e^{-a q} \Gamma (0,q)^n$$

as

$$e^{-a q} \Gamma (0,q)^n=n e^{-(a+1) q} \Gamma (0,q)^{n-1}+a q e^{-a q} \Gamma (0,q)^n+\frac{\partial \left(q e^{-a q} \Gamma (0,q)^n\right)}{\partial q}$$

and integrating over $q$ from $q=0$ to $q=\infty$, observing that the integrated part

$$i = q e^{-a q} \Gamma (0,q)^n$$

vanishes at both ends, we find the following ODE for $f_{n}(a)$

$$f_{n}(a) + a f'_{n}(a) = n f_{n-1}(1+a)\tag{g1}$$

Defining

$$g_{n}(a) = \frac{1}{a} f_{n}(a)\tag{g2}$$

we have, even simpler,

$$g'_{n}(a) = \frac{n}{a+1}g_{n-1}(a+1)\tag{g3}$$

with the initial condition

$$g_{n}(0)=0\tag{g4a}$$

and the "boundary" condition

$$g_{0}(a) = 1\tag{g4b}$$

Summarizing, the equations $g(3)$ and $g(4)$ form a complete recursive set of equations for the solutions $g_{n}(a)$ and, using $(g2)$, for the general integral $f_{n}(a)$. QED.

Discussion

1) @Le Blanc observed in a solution that the problem can be naturally formulated in terms of the Laplace transform. Unfortunatey, this solution was removed.

But we can now reverse the logic and say that we have calculated the Laplace transform of the powers of the incomplete Gamma function.

2) It must be pointed out that the general scheme does not tell us much about possible closed expressions. On the contrary: already for $n=4$ we meet integrals like these, where I'm not aware of closed solutions:

$$i_{1}= \int \frac{\log(1+a) \log(2+a) \log(3+a)}{a+1}\,da$$

$$i_{2}=\int \frac{\operatorname{Li}_3(a+3)}{a+1} \, da$$

$$i_{3}=\int \frac{\text{Li}_3\left(-\frac{a+3}{a+1}\right)}{a+1} \, da$$

ViHdzP
  • 4,582
  • 2
  • 18
  • 44
  • I'll put here the relevant part of the deleted answer, in case it can be useful: In other words we are after the Laplace transform of the squared exponential integral since: $$\Gamma^2(0,x)=\operatorname{Ei}^2(x)=\left(\int_x^\infty \frac{e^{-z}}{z}dz\right)^2=\int_1^\infty \int_1^\infty \frac{e^{-x(y+t)}}{yt}dydt$$ $$\Rightarrow \mathcal L\left(\operatorname{Ei}^2(x)\right)=\int_0^\infty \operatorname{Ei}^2(x)e^{-sx}dx=\int_1^\infty \int_1^\infty \frac{1}{yt}\int_0^\infty e^{-x(y+t+s)}dxdydt $$ $$=\int_1^\infty \int_1^\infty\frac{1}{yt(y+t+s)}dydt=\int_1^\infty \frac{\ln(1+s+t)}{t(s+t)}dt$$ – Zacky Oct 31 '19 at 15:32
  • simply saying, your boundary holds this recurrence formula $f_{n}(0) = nf_{n-1}(1)$ and actually it is a convenient way to calculate integral over incomplete gamma, say $$\int_{0}^{\infty} {\Gamma^{n}(0,q) ,\mathrm{d}q} = n\int_{0}^{\infty} {e^{-q}\Gamma^{n-1}(0,q) ,\mathrm{d}q}$$ I suggest the writing of $g_{n}$ may little bit confused, – Nanayajitzuki Oct 31 '19 at 17:27
  • @Nanayajitzuki Unfortuntely, I don't understand what you're after in your comment. Please explain. – Dr. Wolfgang Hintze Nov 08 '19 at 18:52
  • @Ali Shather Did you see the integrals $i_{1} .. i_{3}$? I'm sure you can say something about them. – Dr. Wolfgang Hintze Nov 08 '19 at 18:55
0

Use Gradshteyn & Rhyshik 4.351.3 (I'm familiar with it because of my solution for MSE 2866629) and the relationship between $\Gamma(0,t)$ and the exponential integral to write

$$\frac{1}{2} \, \Gamma(0,t)^2\, e^{2t} = \int_0^\infty e^{-t\,u} \log{(1+u)} \frac{du}{u+2} $$ The Laplace transform is easily performed by an $\int$ interchange,

$$I(a):=\int_0^\infty e^{-a\,t} \Gamma(0,t)^2 dt = 2 \int_0^\infty e^{-(a+2)t} \int_0^\infty e^{-t\,u} \log(1+u) \frac{du}{u+2} $$

$$ = \int_0^\infty du \log(1+u) \frac{2}{u+2} \int_0^\infty dt \, e^{-(a+2+u)t} = 2\int_0^\infty \frac{\log(1+u)}{(u+2)(u+a+2)} du$$

Mathematica solves it in closed form as

$$ I(a) = \frac{2}{a}\Big( \text{Li}_2(a+2) + \log(2+a)\log(-1-a) - \pi^2/4 \Big) $$

Use Euler's dilogarithm identity $$ \text{Li}_2(x) + \text{Li}_2(1-x) = \pi^2/6 - \log(x) \log(1-x) $$

with $x = -1-a$ and algebra completes the solution.

user321120
  • 6,740