Prove that $$|\frac{a-b}{1-\bar{a}b}|<1$$ if $|a|<1$ and $|b|<1$.
After doing some calculation I ended up in a dead end
$$|\frac{a-b}{1-\bar{a}b}|=\sqrt{\frac{|a|^2+|b|^2-(a\bar{b}+b\bar{a})}{1+|a|^2|b|^2-(a\bar{b}+b\bar{a})}}$$
How do I proceed further ?
Is there any alternating ways like using cauchy's inequality ?