Is there a closed form for $b\in\mathbb{N}$ and $b\geq 2$: $$I(b)=\int_{0}^1 \frac{\ln(x)\ln(1-x)^b}{x^2}dx $$
I've calculated the first couple of values using Mathematica: $$I(2)=\frac{\pi^2}{3}-4\zeta(3)$$ $$I(3)=\frac{\pi^4}{12}-6\zeta(3)$$ $$I(4)=\frac{4\pi^4}{15}+4\pi^2\zeta(3)-72\zeta(5)$$ $$I(5)=\frac{2\pi^6}{9}-60\zeta(3)^2-120\zeta(5)$$
I've managed to show that: $$I(a)=\left(-1\right)^{\left(a+1\right)}a!\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{m}{n\left(n+m\right)^{\left(a+1\right)}} $$ But I'm not too good with double infinite sums.
My question: Can $I$ be expressed as a combination of $\zeta$ functions?