We say that a subset $V$ of $\{1,2,3,\dots\}$ has Cesaro density $\gamma(V)$ and denote $V\in CES$ if the limit $$\gamma(V):=\lim_{n\to \infty} \frac{\mid V\cap \{1,2,3,\dots, n\}\mid}{n}$$ exists. Give an example of sets $V_1\in CES$ and $V_2\in CES$ for which $V_1\cap V_2\notin CES$.
How to find such an example? If I try to show CES is not algebra.