Let $\Omega = \mathbb N$ and define $\mathcal{A}:=\{A\subseteq \Omega: \lim_{n \to \infty}\frac{1}{n} \mid A \cap \{1,...,n\}|$ exists $\}$
By definition a $\sigma$-algebra fulfills:
i) $\Omega \in \mathcal{A}$
ii) $\mathcal{A}$ is $^{c}$-stable
iii) $\mathcal{A}$ is stable under countable unions
For all points, I am not able to construct an argument that would render $\mathcal{A}$ not a $\sigma$-algebra. particularly as $|A \cap \{1,...,n\}| \leq n$ and then $\lim_{n\to \infty }\frac{1}{n}|A \cap \{1,...,n\}|$ would always exist.