Find the least Positive Integer Satisfying $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \ge 4$
My try:
I actually applied a Brute Force taking:
$$\int \frac{dx}{x} \ge 4$$ Then we get: $$\ln x \ge 4$$ Hence $$x \ge e^4$$
So approximately $n=55$
Is there any better approach?