It turns out that the strategy outlined in edit 7 actually works without further assumptions (Lemma 0 takes care of what was missing in edit 7). Details follow.
Proposition 1. If $\mathbb{P}(X=x)>0$ then $\mathbb{P}(Z_m^x\in K^c)\to0, m\to+\infty$
Proof. Since $x\notin K$ we have that
$$\mathbb{P}(Z_m^x\in K^c)\le \mathbb{P}\left(\bigcap_{k=1}^m X_k\neq x\right) = \left(1-\mathbb{P}(X=x)\right)^m \to 0, m\to\infty.$$
Proposition 2. If there exists $r>0$ such that $\mathbb{P}(X\in K^c \cap B_r(x))=0$ then $\mathbb{P}(Z_m^x\in K^c)\to0, m\to+\infty$.
Proof. Since $\mathbb{P}(X\in B_r(x))>0$ and $\mathbb{P}(X\in K^c \cap B_r(x))=0$ we have that:
$$\mathbb{P}(Z_m^x\in K^c)\le \mathbb{P}\left(\bigcap_{k=1}^m X_k\notin B_r(x)\right) = \left(1-\mathbb{P}(X\in B_r(x))\right)^m \to 0, m\to\infty.$$
Thanks to Proposition 1 and Proposition 2, we can (and will) assume from now on that $\mathbb{P}(X=x)=0$ and $\forall r>0, \mathbb{P}(X\in K^c \cap B_r(x))>0$
Lemma 0. $\lim_{r\to0^+} \frac{\mathbb{P}(X\in K^c\cap \bar B_r(x))}{\mathbb{P}( X\in \bar B_r(x))} =0.$
Proof. We know that $\lim_{r\to0^+} \frac{\mathbb{P}(X\in K^c\cap B_r(x))}{\mathbb{P}(X\in B_r(x))} =0.$ Since the set $$\mathcal{Q}:=\{r>0 : \left(\mathbb{P}(X\in K^c\cap \partial B_r(x))>0\right) \lor \left(\mathbb{P}(X\in \partial B_r(x))>0\right) \}$$
is countable, and since
$$\frac{\mathbb{P}(X\in K^c\cap B_s(x))}{\mathbb{P}(X\in B_s(x))}\to\frac{\mathbb{P}(X\in K^c\cap \bar B_r(x))}{\mathbb{P}(X\in \bar B_r(x))}, s\downarrow r$$
for each sequence $r_n \downarrow 0$ we can select $s_n>r_n$ such that $s_n \downarrow 0$ and $$\forall n\in\mathbb{N}, \left|\frac{\mathbb{P}(X\in K^c\cap B_{s_n}(x))}{\mathbb{P}(X\in B_{s_n}(x))}-\frac{\mathbb{P}(X\in K^c\cap \bar B_{r_n}(x))}{\mathbb{P}(X\in \bar B_{r_n}(x))}\right|\le \frac{1}{n}.$$
Then
$$\frac{\mathbb{P}(X\in K^c\cap \bar B_{r_n}(x))}{\mathbb{P}(X\in \bar B_{r_n}(x))}\le \frac{1}{n}+\frac{\mathbb{P}(X\in K^c\cap B_{s_n}(x))}{\mathbb{P}(X\in B_{s_n}(x))}\to 0, n\to+\infty.$$
Since $(r_n)_{n\in\mathbb{N}}$ was arbitrary, Lemma 0 follows.
Lemma 1. There exist $M>0$ and $(r_m)_{m\in\mathbb{N}, m\ge M}$ such that $0<r_m\to0, m\to+\infty$ and
$$\forall m\in\mathbb{N}, (m\ge M)\implies \frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r_m}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r_m}(x))}} \\ \le m \le \frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap B_{r_m}(x))}\sqrt{\mathbb{P}(X \in B_{r_m}(x))}}.$$
Proof. Since $0<\mathbb{P}(X\in \bar B_r)\downarrow \mathbb{P}(X= x) =0, r\downarrow0$ and $\forall r>0, \mathbb{P}(X\in K^c \cap \bar B_r(x))>0$ we have that for each $r>0$ it is well defined
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}}$$
and increases to $+\infty$ as $r\downarrow 0$.
Define $M:=\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{1}(x))}\sqrt{\mathbb{P}(X \in \bar B_{1}(x))}}.$
Now, get $m\in\mathbb{N}$ such that $m\ge M$. Define $$r_m:= \sup\left\{r>0 : \frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}}\ge m\right\}.$$
Notice that for each $r>r_m$ we have that
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}}<m$$
and since
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}} \uparrow \frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r_m}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r_m}(x))}}, r\downarrow r_m$$
we have that
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r_m}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r_m}(x))}} \le m.$$
On the other hand, for each $r\in(0,r_m)$ we have that
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}}\ge m$$
and since
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap \bar B_{r}(x))}\sqrt{\mathbb{P}(X \in \bar B_{r}(x))}} \downarrow \frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap B_{r_m}(x))}\sqrt{\mathbb{P}(X \in B_{r_m}(x))}}, r\uparrow r_m$$
we have that
$$\frac{1}{\sqrt{\mathbb{P}(X \in K^c\cap B_{r_m}(x))}\sqrt{\mathbb{P}(X \in B_{r_m}(x))}}\ge m.$$
Since $m$ was arbitrary, Lemma 1 follows.
Notation. From now on, $M>0$ and $(r_m)_{m\in\mathbb{N}, m\ge M}$ will be as in Lemma 1 and, to get the notation simpler, we assume that $M=1$ (since we are interested in the behavior for $m$ big this isn't a problem) so that $(r_m)_{m\in\mathbb{N}, m\ge M} = (r_m)_{m\in\mathbb{N}}.$
Proposition 3. $\mathbb{P}(Z_m^x\in K^c \cap B_{r_m}(x)) \to 0, m\to+\infty.$
Proof. $$\mathbb{P}(Z_{m}^x \in K^c \cap B_{r_m}(x))\le \mathbb{P}\left(\bigcup_{j=1}^{m} X_j \in K^c \cap B_{r_m}(x)\right) \le \sum_{j=1}^{m} \mathbb{P}(X_j\in K^c\cap B_{r_m}(x)) \\ = m\mathbb{P}(X\in K^c\cap B_{r_m}(x)) \le \left(\frac{\mathbb{P}(X\in K^c\cap B_{r_m}(x))}{\mathbb{P}(X\in B_{r_m}(x))}\right)^{1/2} \to 0, m\to\infty$$
Proposition 4. $\mathbb{P}(Z_m^x\in (\bar B_{r_m}(x))^c) \to 0, m\to+\infty.$
Proof. $$\mathbb{P}(Z_{m}^x \in (\bar B_{r_m}(x))^c)\le \mathbb{P}\left(\bigcap_{j=1}^{m} X_j \notin \bar B_{r_m}(x)\right) = \prod_{j=1}^{m} \mathbb{P} (X_j \notin \bar B_{r_m}(x)) \\ = \left(1-\mathbb{P}(X\in \bar B_{r_m}(x))\right)^{m} \le \exp(-m \mathbb{P}(X\in \bar B_{r_m}(x))) \\ \le \exp\left(-\left(\frac{\mathbb{P}(X\in \bar B_{r_m}(x))}{\mathbb{P}(X\in K^c \cap \bar B_{r_m}(x))}\right)^{1/2} \right) \to 0, m\to +\infty.$$
Lemma 2. Suppose that $r>0$ and $m\in\mathbb{N}$ are such that $\mathbb{P}(Z_m^x\in\partial B_{r}(x))>0$. Then
$$\mathbb{P}(Z_m^x\in K^c | Z_m^x\in\partial B_r(x)) = \mathbb{P}(X\in K^c | X\in \partial B_r(x))$$
and so in particular
$$\mathbb{P}(Z_m^x\in K^c \cap \partial B_r(x)) \le \mathbb{P}(X\in K^c | X\in \partial B_r(x)).$$
Proof.
Define: $$R:=d(x,X),R_1:=d(x,X_1),...,R_m:=d(x,X_m)$$ and notice that $R,R_1,...,R_m$ are i.i.d. and that $\mathbb{P}(R=r)>0$. Define: $$\forall m\in\mathbb{N}, \sigma_m^x: [0,+\infty)^m\to\{1,...,m\}, (r_1,...,r_m)\mapsto \min\left(\operatorname{argmin}_{k\in\{1,...,m\}}\left\{r_k\right\}\right).$$
Then:
$$\pi_m ^x(X_1,...,X_m)= \sigma_m^x(R_1,...,R_m).$$
So:
$$\mathbb{P}(Z_m^x\in K^c | Z_m^x\in\partial B_r(x)) = \frac{ \mathbb{P}(Z_m^x\in K^c \cap Z_m^x\in\partial B_r(x))}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(Z_m^x\in K^c \cap Z_m^x\in\partial B_r(x) \cap
\sigma_m^x(R_1,...,R_m) = k )}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(X_k\in (K^c\cap \partial B_r(x)) \cap
\sigma_m^x(R_1,...,R_{k-1},r,R_{k+1},...,R_m) = k )}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(X_k\in (K^c\cap \partial B_r(x)))\mathbb{P}(\sigma_m^x(R_1,...,R_{k-1},r,R_{k+1},...,R_m) = k )}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(X\in K^c | X\in \partial B_r(x))\mathbb{P}(R_k=r)\mathbb{P}(\sigma_m^x(R_1,...,R_{k-1},r,R_{k+1},...,R_m) = k )}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(X\in K^c | X\in \partial B_r(x))\mathbb{P}(\sigma_m^x(R_1,...,R_m) = k \cap R_k=r)}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \frac{ \sum_{k=1}^m\mathbb{P}(X\in K^c | X\in \partial B_r(x))\mathbb{P}(\sigma_m^x(R_1,...,R_m) = k \cap Z_m^x\in \partial B_r(x))}{\mathbb{P}(Z_m^x\in\partial B_r(x))} = \\ = \mathbb{P}(X\in K^c | X\in \partial B_r(x)) \frac{ \sum_{k=1}^m\mathbb{P}(\sigma_m^x(R_1,...,R_m) = k \cap Z_m^x\in \partial B_r(x))}{\mathbb{P}(Z_m^x\in\partial B_r(x))} \\ = \mathbb{P}(X\in K^c | X\in \partial B_r(x)).$$
Finally:
$$\mathbb{P}(Z_m^x\in K^c \cap \partial B_r(x)) = \mathbb{P}(Z_m^x\in K^c | Z_m^x\in\partial B_r(x))\mathbb{P}(Z_m^x\in\partial B_r(x)) \\ = \mathbb{P}(X\in K^c | X\in \partial B_r(x)) \mathbb{P}(Z_m^x\in\partial B_r(x)) \le \mathbb{P}(X\in K^c | X\in \partial B_r(x)).$$
Lemma 3. If $m:\mathbb{N}\to \mathbb{N}$ is strictly increasing and such that $$\exists \varepsilon >0, \forall k \in \mathbb{N}, \mathbb{P}(X\in K^c | X\in \partial B_{r_{m_k}}(x))\ge \varepsilon$$
then
$$\frac{\mathbb{P}(X\in\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in B_{r_{m_k}}(x))} \to 0, k\to \infty$$
and so
$$\mathbb{P}(Z_{m_k}^x \in \partial B_{r_{m_k}})\to 0, k\to +\infty$$
Proof. We have that $$ \varepsilon \mathbb{P}(X\in\partial B_{r_{m_k}}(x)) \le \mathbb{P}(X\in K | X\in\partial B_{r_{m_k}}(x)) \mathbb{P}(X\in\partial B_{r_{m_k}}(x)) = \mathbb{P}(X\in K \cap \partial B_{r_{m_k}}(x)) $$
and so
$$\frac{\mathbb{P}(X\in\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in \bar B_{r_{m_k}}(x))} \le\frac{1}{\varepsilon} \frac{\mathbb{P}(X\in K\cap\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in \bar B_{r_{m_k}}(x))} \le \frac{1}{\varepsilon} \frac{\mathbb{P}(X\in K\cap\bar B_{r_{m_k}}(x))}{\mathbb{P}(X\in \bar B_{r_{m_k}}(x))} \to 0 , k\to \infty$$
and since
$$\frac{\mathbb{P}(X\in\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in \bar B_{r_{m_k}}(x))} = \frac{\mathbb{P}(X\in\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in B_{r_{m_k}}(x))+\mathbb{P}(X\in \partial B_{r_{m_k}}(x))}$$
it is also clear that
$$\gamma(k):=\frac{\mathbb{P}(X\in\partial B_{r_{m_k}}(x))}{\mathbb{P}(X\in B_{r_{m_k}}(x))}\to 0, k\to\infty.$$
Now:
$$\mathbb{P}(Z^x_{m_k}\in\partial B_{r_{m_k}}(x)) \le \mathbb{P}\left(\bigcup_{j=1}^{m_k}\left(X_j\in\partial B_{r_{m_k}}(x) \cap \bigcap_{i=1, i\neq j} ^{m_k} X_i\in (B_{r_{m_k}}(x))^c\right)\right)\\ \le m_k\mathbb{P}(X\in\partial B_{r_{m_k}}(x))(1-\mathbb{P}(X\in B_{r_{m_k}}(x)))^{m_k-1}=(*)$$
and:
$$(1-\mathbb{P}(X\in B_{r_{m_k}}(x)))^{m_k-1} \le \exp(-(m_k-1)\mathbb{P}(X\in B_{r_{m_k}}(x))) \\ = \exp\left(-\frac{m_k-1}{\gamma(k)}\mathbb{P}(X\in \partial B_{r_{m_k}}(x))\right) $$
so:
$$(*)=m_k\mathbb{P}(X\in\partial B_{r_{m_k}}(x)) \exp\left(-\frac{m_k-1}{\gamma(k)}\mathbb{P}(X\in \partial B_{r_{m_k}}(x))\right) \to 0, k\to+\infty.$$
Lemma 4. Let $m:\mathbb{N}\to \mathbb{N}$ be strictly increasing. Suppose that $$\mathbb{P}(X\in K^c | X\in \partial B_{r_m}(x)) \nrightarrow 0, m\to\infty.$$
Then there exists a strictly increasing function $k:\mathbb{N}\to \mathbb{N}$ such that $$\mathbb{P}(Z_{m_{k_j}}^x\in K^c \cap \partial B_{r_{m_{k_j}}}(x)) \to 0, j\to \infty $$
Proof: easy consequence of Lemma 3.
Proposition 5. $\mathbb{P}(Z_m^x\in K^c \cap \partial B_{r_m}(x)) \to 0, m\to+\infty.$
Proof. If for just a finite number of indexes $m$ we have that $\mathbb{P}(Z_m^x\in K^c \cap \partial B_{r_m}(x))>0$ there's nothing to prove. Otherwise, get all the indexes for which $\mathbb{P}(Z_m^x\in K^c \cap \partial B_{r_m}(x))>0$ and organize them in an strictly increasing sequence. Now, get a subsequence of this sequence, say $(m_k)_{k\in\mathbb{N}}$. If $\mathbb{P}(X\in K^c | X\in \partial B_{r_{m_k}}(x))\to0, k\to\infty$ by Lemma 2 we are done. Otherwise, by Lemma 4 we can find a sub-subsequence $(m_{k_j})_{j\in\mathbb{N}}$ such that $$\mathbb{P}(Z_{m_{k_j}}^x\in K^c \cap \partial B_{r_{m_{k_j}}}(x)) \to 0, j\to \infty.$$
Since every subsequence has a subsequence that converges to zero, we are done.
Theorem. $\mathbb{P}(Z_m^x\in K^c) \to 0, m\to+\infty.$
Proof. Thanks to Proposition 3, 4 and 5 we have that
$$\mathbb{P}(Z_m^x\in K^c)\\ \le \mathbb{P}(Z_m^x\in K^c \cap B_{r_m}(x)) + \mathbb{P}(Z_m^x\in K^c \cap \partial B_{r_m}(x)) + \mathbb{P}(Z_m^x\in (\bar B_{r_m}(x))^c) \to 0 , m\to +\infty.$$