Let $(\Omega,\mathcal{F},\mathbb{P})$ be a probability space and $(\mathcal{X},d)$ be metric space. Suppose that $X,X_1,X_2,X_3,... : \Omega\to\mathcal{X}$ are $\mathbb{P}$-i.i.d. random variables.
Get a closed set $K$ of $(\mathcal{X},d)$ and $x\in\partial K$.
Suppose that: $$\exists r_x>0, \exists \delta_x >0, \forall r\in(0,r_x), \frac{\mathbb{P}(X\in K\cap B_r (x))}{\mathbb{P}(X\in B_r (x))}\ge \delta_x+\frac{\mathbb{P}(X\in K^c\cap B_r (x))}{{\mathbb{P}(X\in B_r (x))}},$$ where $B_r(x)$ is the open ball centered in $x$ of radius $r$ in $(\mathcal{X},d)$.
Define: $$\forall m\in\mathbb{N}, \pi_m^x: \mathcal{X}^m\to\{1,...,m\}, (x_1,...,x_m)\mapsto \min\left(\operatorname{argmin}_{k\in\{1,...,m\}}\left(d\left(x,x_1\right),...,d\left(x,x_m\right)\right)\right).$$
Define: $$\forall m\in\mathbb{N}, Z_m^x:\Omega\to\mathcal{X}, \omega\mapsto X_{\pi_m^x\left((x,X_1(\omega),...,X_m(\omega)\right)}(\omega).$$
Is it true that $\mathbb{P}(Z_m^x\in K^c)\to 0, m\to\infty?$
Intuitively, since if $m$ is big enough we have that $\mathbb{P}(Z_m^x\in K^c\cap B_{r_x}(x))$ is close to $\mathbb{P}(Z_m^x\in K^c)$, the dynamic is definitively governed by what happens in $B_{r_x}(x)$ and inside this ball is more likely to get $X\in K$ instead of $X\in K^c$... however, I didn't find a way to convert this intuition into a proof.