Let $f(x,y)=\dfrac{x^2-y^2}{(x^2+y^2)^2}$ prove:
$$\int_0^1\left(\int_0^1f(x,y)dy\right)dx=\frac{\pi}{4}\tag1$$
$$\int_0^1\left(\int_0^1f(x,y)dx\right)dy=\frac{-\pi}{4}\tag2$$
Why the Fubini theorem fail??
My attempt:
For $(1)$ we have:
$$\int_0^1\left(\int_0^1f(x,y)dy\right)dx=\int\int\frac{\partial}{\partial y}\left(\frac{y}{x^2+y^2}\right)=\int \frac{y}{x^2+y^2}\bigg|_{y = 0}^{y = 1}dx=\int\frac{1}{x^2+1}dx= \\ =\arctan(x)\bigg|_0^1=\frac{\pi}{4}$$
For $(2)$ we have:
$$\int_0^1\left(\int_0^1f(x,y)dx\right)dy=\int\int\frac{\partial}{\partial x}\left(\frac{-x}{x^2+y^2}\right)dxdy=-\int_0^1\frac{1}{1+y^2}dy=-\frac{\pi}{4}$$
I don't have very clear why Fubini Theorem fail. Can someone help me?
https://en.wikipedia.org/wiki/Fubini%27s_theorem (Fubini-Tonelli Theorem)