I'm getting rid of all the unnecessary parameters (and setting $x \to \beta x$):
$$\int_{-\infty}^{\infty} x ~ e^{-a x- b^2 (x-c)^2} I_0 (x) dx$$
We'll also solve an easier integral:
$$J(a,b,c)=\int_{-\infty}^{\infty}e^{-a x- b^2 (x-c)^2} I_0 (x) dx$$
To get back to the first integal we only need to take $a$ derivative:
$$ \frac{\partial J(a,b,c)}{\partial a}=-\int_{-\infty}^{\infty} x ~ e^{-a x- b^2 (x-c)^2} I_0 (x) dx$$
Now we use the integral representation of the Bessel function:
$$I_0(x)=\frac{1}{\pi} \int_0^{\pi} e^{x \cos t} dt$$
Then we have:
$$J=\frac{1}{\pi} \int_0^{\pi} \int_{-\infty}^{\infty} e^{-(a-\cos t) x- b^2 (x-c)^2}~ dx~ dt$$
Let's complete the square (setting $a-\cos t=\gamma(t)$ for now):
$$-\gamma x- b^2 (x-c)^2=-b^2 \left(x-c+\frac{\gamma}{2 b^2} \right)^2+\frac{\gamma^2}{4 b^2}-c \gamma$$
So the integral becomes:
$$J=\frac{1}{\pi} \int_0^{\pi} \exp \left( \frac{\gamma^2}{4 b^2}-c \gamma \right) \int_{-\infty}^{\infty} e^{-b^2 z^2}~ dz~ dt=$$
$$=\frac{1}{\sqrt{ \pi}~ b} \int_0^{\pi} \exp \left( \frac{\gamma(t)^2}{4 b^2}-c \gamma(t) \right) ~dt$$
Getting back to the original expression for $\gamma$:
$$\frac{\gamma(t)^2}{4 b^2}-c \gamma(t)=\frac{a^2}{4 b^2}-ac+\left(c-\frac{a}{2 b^2} \right) \cos t+\frac{1}{4 b^2} \cos^2 t$$
$$J=\frac{1}{\sqrt{ \pi}~ b} \exp \left( \frac{a^2}{4 b^2}-ac \right) \int_0^{\pi} \exp \left( \left(c-\frac{a}{2 b^2} \right) \cos t+\frac{1}{4 b^2} \cos^2 t \right) ~dt$$
Now I'll rename the parameters again for clarity:
$$J=\frac{A}{\pi} \int_0^{\pi} e^{ B \cos t+C \cos^2 t } ~dt$$
And now there is only series solution available (as far as I know). Expanding the second exponent:
$$ e^{C \cos^2 t }=1+C \cos^2 t+\frac{C^2}{2} \cos^4 t+\cdots+\frac{C^{k}}{k!} \cos^{2k} t+\cdots$$
$$I_0(B)= \frac{1}{\pi} \int_0^{\pi} e^{ B \cos t} ~dt $$
$$\frac{d^2 I_0(B)}{d B^2}= \frac{1}{\pi} \int_0^{\pi} e^{ B \cos t} \cos^2 t~dt =\frac{1}{2} (I_0(B)+I_2(B))$$
And so on. We obtain a series:
$$J=A \sum_{n=0}^{\infty} \frac{C^n}{n!} I_0^{(2n)} (B)$$
Here $I_0^{(2n)}$ - $2n^{th}$ derivative of $I_0(B)$ w.r.t. $B$.
$$A=\frac{\sqrt{\pi}}{b} \exp \left( \frac{a^2}{4 b^2}-ac \right)$$
$$B=c-\frac{a}{2 b^2} $$
$$C=\frac{1}{4 b^2}$$
I'll leave it for you to recover your original parameters and find:
$$\int_{-\infty}^{\infty} x ~ e^{-a x- b^2 (x-c)^2} I_0 (x) dx=-\frac{\partial}{\partial a} A \sum_{n=0}^{\infty} \frac{C^n}{n!} I_0^{(2n)} (B)$$
$$\int_{-\infty}^{\infty} x ~ e^{-a x- b^2 (x-c)^2} I_0 (x) dx=A \left(B \sum_{n=0}^{\infty} \frac{C^n}{n!} I_0^{(2n)} (B)+\frac{C}{2} \sum_{n=0}^{\infty} \frac{C^n}{n!} I_0^{(2n+1)} (B) \right)$$