If $f(x)=\lim_{n \to \infty}f_n(x)$ where $f_n(x)=\dfrac{2nx}{1+n^2x^4}$, find $$\int_0^1f(x)dx\quad \text{and} \quad \lim_{n \to \infty}\int_0^1f_n(x)\,dx$$
For the first part:
$$\lim_{n\to \infty}f_n(x)=0$$
Therefore
$$\int_0^1f(x)\,dx=\int_0^10\,dx=0$$
Then for the second part:
$$\lim_{n\to \infty}\int_0^1f_n(x)\,dx=\lim_{n\to \infty}2n\int_0^1\frac{x}{1+n^2x^4}\,dx=\lim_{n\to \infty}\left(\tan^{-1}(n)-\tan^{-1}(0)\right)=?$$
It looks like it goes to $\pi/2$ since $\tan^{-1}$ is an integer when we're at $\pi/4,5\pi/4,9\pi/4,\ldots$
and these are a distance of $\pi/4$ from $\tan^{-1}(0)$. Then we get $\pi/2$. But I dont see how else to show this or if my calculations are correct. Does this make sense? Is there a better way to show this?