I am trying to find a closed form solution for $\sum_{n\ge0} nx^n\text{, where }\lvert x \rvert<1$.
This solution makes sense to me:
$\sum_{n\ge0} x^n=(1-x)^{-1} \\ \frac{d}{d x} \sum_{n\ge0} x^n = \frac{d}{d x} (1-x)^{-1} \\ \sum_{n\ge0} nx^{n-1} = (1-x)^{-2} \\ x \sum_{n\ge0} n x^{n-1} = x(1-x)^{-2} \\ \sum_{n\ge0} nx^n=\frac x{(1-x)^2}$
However, a book I am reading used the following method:
$$\sum_{n\ge0}nx^n=\sum_{n\ge0}x\frac d{dx}x^n= x\frac d{dx}\sum\limits_{n\ge0}x^n=x\frac d{dx}\frac1{1-x}=\frac x{(1-x)^2}$$
This seems closely related to the solution I described above, but I am having difficulty understanding it. Can someone explain the method being used here?