I can not find the function from which I have to start to calculate this power series. $$\sum_{n=1}^\infty nx^n$$ Any tips?. Thanks.
Asked
Active
Viewed 520 times
1
-
2Strongly related. – Dec 01 '13 at 06:30
-
1http://math.stackexchange.com/questions/333192/solve-sum-nxn – lab bhattacharjee Dec 01 '13 at 06:34
2 Answers
3
We can do it another way.
$S = x + 2x^2 + 3x^3 + \ldots $
It can be written as
$ \Rightarrow S = (x + x^2 + x^3 + \ldots)+(x^2 + x^3 + \ldots)+(x^3 + \ldots)+\ldots $
$\Rightarrow S = (x + x^2 + x^3 + ...)+x(x + x^2 + ...)+x^2(x + ...) + \ldots $
$\Rightarrow S = ( 1+x+x^2+ .. )\times( x+x^2+.. )$
$\Rightarrow S = \frac{1}{1-x}\times\frac{x}{1-x}$
$\Rightarrow S = \frac{x}{(1-x)^2} $