Maclaurin expansion of $\arccos(1-2x^2)$
This is what I tried.
$f'(x)=2(1-x^2)^{-1/2} \\ f''(x)=2(1-x^2)^{-3/2}+3 \cdot 2 x^2(1-x^2)^{-5/2} \\ f^{(3)}(x)=18x(1-x^2)^{-5/2}+2\cdot 3\cdot 5x^3(1-x^2)^{-7/2} \\ f^{(4)}(x)=18(1-x^2)^{-5/2}+180x^2(1-x^2)^{-7/2}+2\cdot 3\cdot 5\cdot 7x^4(1-x^2)^{-9/2}$
From this I get $f'(0)=2 $, $f''(0)=0 $, $f^{(3)}(0)=2 $, $f^{(4)}(0)=0 $
But I don't know how to find a general term. Can this be solved in easier steps?