It's doable in a minute of mental arithmetic via CRT. $\bmod 103\!:\ 100\equiv -3\Rightarrow p(100)\equiv p(-3)\,$ for any polynomial $\,p(x)\,$ with integer coefs, by here or by the Polynomial Congruence Rule. In particular when we write an integer $\,n\,$ in radix $100$ this this yields $n = p(100)$ as a (radix) polynomial $\, n = p(100) = d_0 + d_1(100) + d_2(100^2)+\cdots,\,$ whose coef's $d_i$ are its radix $100$ digits. A handy way to evaluate $\,n = p(100)\equiv p(-3)\,$ is to write the polynomial in "nested" Horner form and evaluate it "inside out" as below - with $\rm\color{#90f}{partial}\ \color{#0a0}{eval}\color{#c00}{uations}$ written below it.
$\!\!\begin{align}
\bmod 103\!:\,\ n = \color{#f6f}3,\color{#0af}{53},09,\color{#0a0}{42},32_{\:\!100} = (((\color{#f6f}3(100)+&\color{#0af}{53)}\,100\,+\,9)\,100\,+\,\color{#0a0}{42})\,100\,+\,32 = p(100)\\[.3em]
\text{thus, by $\,100\equiv -3,\ $}\,\ n\equiv (((\color{#f6f}3\,({-3}) + &\color{#0af}{53})({-3}) + 9)\color{#90f}{(-3)}+\color{#0a0}{42})(-3) + 32\equiv 35\\
\text{evaluating from inside-out yields:}\ \ \ \ \ \ &44)\ \ \ \ \ \ \ \ \underbrace{\color{#90f}{{-}20)}\ \ \ \ \ \ \ \ \ \ \ \ {\color{#c00}{-1}}}_{\large\!\!\!\! \color{#90f}{-20(-3)}\ +\ \color{#0a0}{42}\ \equiv\ \rlap{\color{#c00}{-1}\ }})\ \ \ \ \ \ \ \ \ \ \ \ \ 35)\\
\end{align}$
$\!\bmod 7\!:\ \ \ \ \ \ 353094232\equiv 1\,$ by this Remark ($10$ secs of mental arithmetic).
$\!\bmod 721\!:\,\ 353094232\equiv 35+103\underbrace{\left[\dfrac{1\!-\!35}{103}\bmod 7\right]}_{\Large\frac{-34}{-2}\equiv\ 17\ \equiv\ 3}\equiv 344\ $ by Easy CRT
Though it is instructive, it is not any quicker than long division. But it may be for other numbers.