The assumptions can be relaxed if one works in the setting of Lebebgue integration.
Propoisiton A: Suppose that
- (a) $f\in L^{loc}_s[a,\infty)$ (i.e. $f$ is Lebesgue integrable in any closed and bounded subinterval of $[a,\infty)$).
- (b) $C=\sup_{x\geq a}\Big|\int^x_a f(t)\,dt\Big|<\infty$
- (c) $g$ is nonincreasing, bounded, nonnegative on $[a,\infty)$ with $g(x)\xrightarrow{x\rightarrow\infty}0$.
Then $I=\lim_\limits{b\rightarrow\infty}\int^b_a f(t)g(t)\,dt$ exists (as a real number).
Here is another result with slightly different conditions.
Propositon B: Suppose that
- (a) $f\in L^{loc}_s[a,\infty)$ (i.e. $f$ is Lebesgue integrable in any closed and bounded subinterval of $[a,\infty)$
- (b) $\lim_\limits{b\rightarrow\infty}\int^b_af(t)\,dt$ exits (as a real number)
- (c) $g$ is monotone and bounded
Then $I=\lim_\limits{b\rightarrow\infty}\int^b_a f(t)g(t)\,dt$ exists (as a real number).
Proof of Propositions: By the second mean value theorem for integrals, for any $a<M<N$, there is $x_0=x_0(M,N)\in[M,N]$ such that
\begin{align}
\int^N_M f(t)g(t)\,dt=g(M)\int^{x_0}_Mf(t)\,dt+g(N)\int^N_{x_0}f(t)\,dt\tag{0}\label{zero}
\end{align}
Under the assumptions of Proposition A, for any $\varepsilon>0$, there is $K>a$ such that $|g(t)|<\frac{\varepsilon}{2(C+1)}$ whenever $t\geq K$. From \eqref{zero}, if $N>M>K$,
$$\Big|\int^N_M f(t)g(t)\,dt\Big|<\varepsilon$$
Under the conditions of Proposition B, for any $\varepsilon>0$, there is $K>a$ such that $\big|\int^p_qf(t)\,dt\big|<\frac{\varepsilon}{2(\|g\|+1)}$ whenever $p\geq q\geq K$. From \eqref{zero}, if $K<M<N$,
$$\Big|\int^N_M f(t)g(t)\,dt\Big|<\varepsilon$$
In both cases, it follows from Cauchy's criteria that $\lim_\limits{b\rightarrow\infty}\int^b_a f(t)g(t)\,dt$ exists.