1

Suppsoe that $$c = \frac{(a+b)(a+b+1)}{2} + b$$

Now $c$ is given - how does one find satisfying $a, b$?

user1551
  • 139,064
bounce
  • 191

2 Answers2

2

Assuming you have the condition that $a,b,c$ are natural numbers.

Let $T_n=\frac{n(n+1)}{2}$ be the $n$th triangular number.

Let $T_m$ be the largest triangular number less than or equal to $c$.

Show that $c-T_m\leq m$

Let $a=c-T_m$ and $b=m-a$.

You can actually get an explicit formula for $m$, namely: $$m=\left\lfloor \frac{-1+\sqrt{8c+1}}{2}\right\rfloor$$

Thomas Andrews
  • 177,126
0

the equation:

$c=\frac{(a+b)(a+b+1)}{2}+b$

Solutions can be written:

$a=\frac{q(q\pm1)}{2}-c-1$

$b=c-\frac{q(q\mp1)}{2}$

$q$ - what some integer.

individ
  • 4,301