Let $I$ be the integral given by
$$\begin{align}
I&=\int_0^{\pi/3}\text{arctanh}(\sin(x))\,dx\\\\
&=\frac12\int_0^{\pi/3}\log\left(\frac{1+\sin(x)}{1-\sin(x)}\right)\,dx\\\\
&=\frac12\int_{-\pi/3}^{\pi/3}\log\left(1+\sin(x))\right)\,dx\tag1
\end{align}$$
Then, enforcing the substitution $x\mapsto \pi/2-x$ in $(1)$, we find that
$$\begin{align}
I&=\frac12\int_{\pi/6}^{\pi/2}\log\left(\frac{1+\cos(x)}{1-\cos(x)}\right)\,dx\\\\
&=-\int_{\pi/6}^{\pi/2}\log\left(\tan(x/2)\right)\,dx\\\\
&=-2\int_{\pi/12}^{\pi/4}\log\left(\tan(x)\right)\,dx\tag2
\end{align}$$
Next, using the Fourier series for $\tan(x)=\sum_{k=1}^\infty \frac{(-1)^k-1}{k}\cos(2kx)$ in $(2)$ reveals
$$\begin{align}
I&=2\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{2}\right)-\sin\left(\frac{(2k-1)\pi}{6}\right)}{(2k-1)^2}\\\\
&=2\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{2}\right)-\sin\left(\frac{(2k-1)\pi}{6}\right)}{(2k-1)^2}\\\\
&=2\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{2}\right)}{(2k-1)^2}-2\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{6}\right)}{(2k-1)^2}\\\\
&=2\sum_{k=1}^\infty \frac{(-1)^k}{(2k-1)^2}-2\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{6}\right)}{(2k-1)^2}\\\\
&=2\left(G-\sum_{k=1}^\infty \frac{\sin\left(\frac{(2k-1)\pi}{6}\right)}{(2k-1)^2}\right)\tag3
\end{align}$$
Using judicious grouping, user @M.N.C.E. showed in THIS ANSWER that the right-hand side of $(3)$ was equal to $2G/3$. Hence we find that
$$I=2G/3$$
as was to be shown!