8

Prove that $$\int_0^{\infty} \frac {\ln(1+x^3)}{1+x^2}dx=\frac {\pi \ln 2}{4}-\frac {G}{3}+\frac {2\pi}{3}\ln(2+\sqrt 3)$$ Where $G$ is the Catalan's constant.

Actually I proved this using the Feynman's trick namely by introducing the parameter $a$ such that $$\xi(a)=\int_0^{\infty} \frac {\ln(1+ax^3)}{1+x^2}dx$$

Where it is clear that $\xi(0)=0$, hence we just need $$\int_0^1 \xi'(a)da$$ which I found too. Hence proving the statement, but this method was too much lengthy because it involved heavy partial fraction decomposition and one infinite summation.

Can someone suggest some better method?

Edit: I also tried some trigonometry bashing by using the substitution $x=\tan \theta$ but got stuck midway

Zacky
  • 27,674
Rohan Shinde
  • 9,737
  • 2
    Well, $\ln(1+x^3)=\ln(1+x)+\ln(1+\omega x)+\ln(1+\omega^2x)$ for $\omega=\exp(2\pi i/3)$ so maybe the thing to evaluate is $$\int_0^\infty\frac{\ln(1+tx)}{1+x^2},dx?$$ – Angina Seng Jun 01 '19 at 09:42
  • @LordSharktheUnknown But using this I get $$\int_0^{\infty} \frac {\ln(1+tx)}{1+x^2}dx=\frac {\pi}{4}\ln(t^2+1) $$ which is absolutely incorrect – Rohan Shinde Jun 01 '19 at 10:12
  • @Lord Shark the Unknown $$I'(t)=\int_0^{\infty}\frac {x}{(1+x^2)(1+tx)}dx=\int_0^{\infty}\frac {1}{t^2+1}\left(\frac {x+t}{1+x^2}-\frac {t}{1+tx}\right)dx$$.$$\Rightarrow I'(t)=\frac {t\pi}{2(1+t^2)}+\frac {1}{1+t^2}\ln\left(\frac {\sqrt {x^2+1}}{1+tx}\right)\Bigg\vert_0^{\infty}=\frac {\pi t}{2(t^2+1)}$$ – Rohan Shinde Jun 01 '19 at 10:18
  • Your two comments can't both be correct. – Angina Seng Jun 01 '19 at 10:21
  • @LordSharktheUnknown Why? Where am I going wrong. – Rohan Shinde Jun 01 '19 at 10:23
  • @Lord Shark the Unknown I know the answer I am getting is wrong because I(1) itself using this is wrong so Could you please elaborate where I am going wrong? – Rohan Shinde Jun 01 '19 at 10:25
  • Other approaches can be found here: https://math.stackexchange.com/q/1669992/515527 – Zacky Jun 06 '19 at 19:31
  • @rohanshinde $$ \lim_{L\to\infty}\log\left(\frac{\sqrt{L^2+1}}{1+tL}\right)=-\log(t)\ne0$$ – Mark Viola Jul 19 '20 at 16:57

3 Answers3

7

Remark. I have encountered a similar integral a few months ago and proposed it here$(I_8)$. $$\sf I_8=\int_0^1 \frac{\ln(1+x^3)}{1+x^2}dx\overset{x=\frac{1}{x}}=\int_1^\infty\frac{\ln(1+x^3)-3\ln x}{1+x^2}dx$$ $$\sf \Rightarrow 2I_8=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx-3\int_1^\infty \frac{\ln x}{1+x^2}dx\Rightarrow \boxed{I_8=\frac12I-\frac32G}$$


We can solve it without using partial fraction or series in atleast two ways that I can think of. The second solution might be easier, but I like the first one more.

Solution 1. Start by letting $\sf x=\frac{1-t}{1+t}\Rightarrow dx=-\frac{2}{(1+t)^2}dt$ $$\sf I=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx=\int_{-1}^1 \frac{\ln\left(\frac{2(1+3t^2)}{(1+t)^3}\right)}{t^2+1}dt$$ $$\sf =2\ln 2\int_0^1\frac{1}{1+t^2}dt-3\int_{-1}^1\frac{\ln(1+t)}{1+t^2}dt+2\underbrace{\int_0^1 \frac{\ln(1+3t^2)}{1+t^2}dt}_{J}$$ $$\sf =\frac{\pi}{2}\ln 2 -\frac{3\pi}{4}\ln 2 +3G +2J$$ Where $G$ is Catalan's constant and that is quite easy to show. Now for Feynman's trick consider: $$\sf J(a)=\int_0^1 \frac{\ln((1+x^2)a+2x^2)}{1+x^2}dx\Rightarrow J'(a)=\int_0^1 \frac{1}{(1+x)^2a+2x^2}dx$$

$$\sf =\frac{1}{a+2}\int_0^1 \frac{1}{x^2+\frac{a}{a+2}}dx=\frac{1}{\sqrt{a}\sqrt{a+2}}\arctan\left(\frac{\sqrt {a+2}}{\sqrt a}\right)$$

We have $$\sf J(0)=\int_0^1 \frac{\ln 2 +\ln(x^2)}{1+x^2}dx=\frac{\pi}{4}\ln 2-2G$$ $$\sf \Rightarrow J=J(1)-J(0)+J(0)=\underbrace{\int_0^1 J'(a)da}_{X} +J(0)$$ $$\sf \text{let } \sqrt{\frac{a+2}{a}}=t\Rightarrow \frac{1}{\sqrt{a}\sqrt{a+2}}da=-\frac{2}{x^2-1}dx$$ $$\sf X=\int_0^1 \frac{1}{\sqrt{a}\sqrt{a+2}}\arctan\left(\frac{\sqrt {a+2}}{\sqrt a}\right)da=2\int_\sqrt 3^\infty \frac{\arctan x}{x^2-1}dx$$ $$\sf \overset{IBP}=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_{\sqrt 3}^\infty \frac{\ln\left(\frac{x-1}{x+1}\right)}{1+x^2}dx$$ With $\sf \frac{x-1}{x+1}= t\Rightarrow x=\frac{1+t}{1-t}$ we get: $$\sf X=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_{2-\sqrt 3}^1 \frac{\ln t}{1+t^2}dt$$$$\sf \overset{t=\tan x}=\frac{\pi}{3}\ln(2+\sqrt 3)-\int_0^{\frac{\pi}{4}}\ln(\tan x)dx+\int_0^\frac{\pi}{12} \ln(\tan x)dx=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac13G$$ See for example here in order to obtain the result from above. And finally we have:

$$\sf \boxed{J=\int_0^1\frac{\ln(1+3x^2)}{1+x^2}dx=\frac{\pi}{3}\ln(2+\sqrt 3)+\frac{\pi}{4}\ln 2-\frac53G}$$ $$\sf \boxed{I=\int_0^\infty \frac{\ln(1+x^3)}{1+x^2}dx=\frac{2\pi}{3}\ln(2+\sqrt 3)+\frac{\pi}{4}\ln 2 -\frac13G}$$


Solution 2. This should be like a follow up from your edit attempt. Rewrite the integral as $$\sf I=\int_0^\infty \frac{\ln(1-x+x^2)}{1+x^2}dx+\int_0^\infty \frac{\ln(1+x)}{1+x^2}dx$$ The second one is pretty easy $\sf I_2=\frac{\pi}{4}\ln 2+G$, and for the first integral let $\sf x=\tan t$. $$\sf I_1=\int_0^\frac{\pi}{2} \ln(1-\sin t\cos t )dt-2\int_0^\frac{\pi}{2} \ln(\cos t)dt=\frac{\pi}{2} \ln 2 +\int_0^\frac{\pi}{2}\ln(2-\sin t)dt$$ And now combining with Solution 2 we get, keeping the same notation found there: $$\sf B=\frac{1}{2}\left((A+B)-(A-B)\right)=\frac12\left(\pi\ln(2+\sqrt 3)-\pi \ln 2+\frac{\pi}{3}\ln(2+\sqrt 3)-\frac83G\right)$$ And the result follows.

Zacky
  • 27,674
1

Note

$$\int_0^{\infty} \frac {\ln(1+x^3)}{1+x^2}dx = \underset{= \frac\pi4\ln2+G}{ \int_0^{\infty} \frac {\ln(1+x)}{1+x^2}dx} + \underset{=K}{\int_0^{\infty} \frac {\ln(1-x+x^2)}{1+x^2}dx} \tag1 $$ To compute $K$, let $J(a)= \int_0^{\infty} \frac {\ln\left(\frac12 (1+x^2)\sec a-x\right)}{1+x^2}dx $ $$J’(a) = \int_0^\infty \frac{\tan a}{(x-\cos a)^2 + \sin^2a}dx=(\pi-a)\sec a $$ \begin{align} K&=\>J(\frac\pi3) =J(0)+\int_0^{\frac\pi3} J’(a)da =-2G +\int_0^{\frac\pi3} (\pi -a)\sec a\>da\\ &\overset{\text{ibp}}=-2G +(\pi-a)\tanh^{-1}(\sin a)\bigg|_0^{\frac\pi3}+\int_0^{\frac\pi3} \tanh^{-1}(\sin a)\>da\\ &=-2G +\frac{2\pi}3\ln(\sqrt3+2)+\frac23G \end{align}

where $\int_0^{\frac\pi3} \tanh^{-1}(\sin a)\>da=\frac23G $. Substitute into (1) to obtain $$\int_0^{\infty} \frac {\ln(1+x^3)}{1+x^2}dx=\frac {\pi}{4}\ln2+\frac {2\pi}{3}\ln(\sqrt 3+2)- \frac {G}{3} $$

Quanto
  • 97,352
1

Noticing that

$$ \begin{aligned} & \int_{0}^{\infty} \frac{\ln \left(1+x^{3}\right)}{1+x^{2}} d x =\underbrace{\int_{0}^{\infty} \frac{\ln (1+x)}{1+x^{2}}}_{\frac{\pi}{4} \ln 2+G} d x+\underbrace{\int_{0}^{\infty} \frac{\ln \left(1-x+x^{2}\right)}{1+x^{2}}}_{K} d x \end{aligned} $$ where the first integral comes from my post.

Now we going to find the integral $K$ by observing $$ \begin{aligned}K=\int_{0}^{\infty} \frac{\ln \left(1-x+x^{2}\right)}{1+x^{2}} = \underbrace{\int_{0}^{\infty} \frac{\ln \left(1+x^2+x^{4}\right)}{1+x^{2}} d x}_{\pi\ln (2+\sqrt 3)}- \underbrace{\int_{0}^{\infty} \frac{\ln \left(1+x+x^{2}\right)}{1+x^{2}} d x}_{ \frac{\pi}{3} \ln (2+\sqrt{3})+\frac{4}{3}G} \end{aligned} $$

where the first integral comes from my post and @Quanto’s post .

Now we can conclude that $$\boxed{ \int_{0}^{\infty} \frac{\ln \left(1+x^{3}\right)}{1+x^{2}} d x=-\frac{G}{3}+\frac{\pi}{4} \ln 2 +\frac{2 \pi}{3}(2+\sqrt{3})} $$

Lai
  • 20,421